
Designing Applications 
with JBuilder®

VERSION  8

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

JBuilder®



Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list of files that 
you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this 
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of 
this document does not give you any license to these patents.

COPYRIGHT © 1997–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names 
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. 
All other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JBE0080WW21001designui 3E2R1002
0203040506-9 8 7 6 5 4 3 2 1
PDF



i

Chapter 1
Visual design in JBuilder 1-1
Documentation conventions  .  .  .  .  .  .  .  .  .  .  .  1-3
Developer support and resources  .  .  .  .  .  .  .  .  1-4

Contacting Borland Technical Support.  .  .  .  1-4
Online resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
World Wide Web  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
Borland newsgroups .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
Usenet newsgroups   .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-6
Reporting bugs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-6

Requirements for a class to be visually 
designable.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-6

Starting with wizards  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-7
Understanding JavaBeans.  .  .  .  .  .  .  .  .  .  .  .  .  1-8

Understanding containers .  .  .  .  .  .  .  .  .  .  .  1-8
Types of containers .  .  .  .  .  .  .  .  .  .  .  .  .  1-9

Understanding component libraries .  .  .  .  . 1-10

Chapter 2
Introducing the designer 2-1
Using the designer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-1

The design surface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-3
The component palette   .  .  .  .  .  .  .  .  .  .  .  .  2-4

Using the Bean Chooser  .  .  .  .  .  .  .  .  .  .  2-4
The Inspector  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-6
The component tree  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-6

Designer categories  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-7
UI designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-7
Menu designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-8
Data Access designer   .  .  .  .  .  .  .  .  .  .  .  .  .  2-8
Default designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-8
Keyboarding in the designer  .  .  .  .  .  .  .  .  .  2-8

Chapter 3
Using the component tree and
Inspector 3-1

Using the component tree.  .  .  .  .  .  .  .  .  .  .  .  .  3-1
Opening particular designer types .  .  .  .  .  .  3-3
Adding components .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-3
Cutting, copying, and pasting 

components .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-4
Deleting components   .  .  .  .  .  .  .  .  .  .  .  .  .  3-4
Using Undo and Redo .  .  .  .  .  .  .  .  .  .  .  .  .  3-5

Changing a component name  .  .  .  .  .  .  .  .  . 3-5
Moving a component .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-5
Viewing component class names   .  .  .  .  .  .  . 3-6
Understanding component tree icons .  .  .  .  . 3-6

Using the Inspector .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-6
Surfacing property values  .  .  .  .  .  .  .  .  .  .  . 3-7

Making properties class variables  .  .  .  .  . 3-7
Setting property exposure   .  .  .  .  .  .  .  .  . 3-7

Setting property values .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
Setting shared properties  .  .  .  .  .  .  .  .  .  . 3-9
Setting a property when the 

drop-down list is empty.  .  .  .  .  .  .  .  .  . 3-9
Understanding the Inspector .  .  .  .  .  .  . 3-10

Chapter 4
Handling events 4-1
Attaching event-handling code  .  .  .  .  .  .  .  .  .  . 4-2

Creating a default event handler   .  .  .  .  .  .  . 4-2
Deleting event handlers   .  .  .  .  .  .  .  .  .  .  .  . 4-3

Connecting controls and events .  .  .  .  .  .  .  .  .  . 4-3
Standard event adapters .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4

Anonymous inner class adapters  .  .  .  .  .  .  . 4-5
Choosing event handler style  .  .  .  .  .  .  .  .  . 4-6

Examples: connecting and handling events  .  .  . 4-6
Displaying text when a button is pressed.  .  . 4-7
Invoking a dialog box from a menu item .  .  . 4-7

Chapter 5
Creating user interfaces 5-1
Selecting components in the UI .  .  .  .  .  .  .  .  .  . 5-2

Adding to nested containers .  .  .  .  .  .  .  .  .  . 5-2
Moving and resizing components.  .  .  .  .  .  .  .  . 5-3
Managing the design .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-4

Grouping components  .  .  .  .  .  .  .  .  .  .  .  .  . 5-5
Adding application-building 

components   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-5
Menus .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-6
Dialog boxes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-6
Database components .  .  .  .  .  .  .  .  .  .  .  . 5-8

Changing look and feel.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-9
Runtime look and feel .  .  .  .  .  .  .  .  .  .  .  . 5-9
Design time look and feel .  .  .  .  .  .  .  .  .  5-11

Testing the UI at runtime .  .  .  .  .  .  .  .  .  .  .  5-11

Contents



ii

Chapter 6
Designing menus 6-1
Opening the Menu designer  .  .  .  .  .  .  .  .  .  .  .  6-1
Menu terminology .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-2
Menu design tools .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-3
Creating menus   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-4

Adding menu items  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-5
Inserting and deleting menus and 

menu items  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-5
Inserting separators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-6
Specifying accelerator keys  .  .  .  .  .  .  .  .  .  .  6-6
Disabling (dimming) menu items   .  .  .  .  .  .  6-6

To disable a Swing menu item.  .  .  .  .  .  .  6-6
Creating checkable menu items.  .  .  .  .  .  .  .  6-7
Creating Swing radio button menu items .  .  6-7

Moving menu items .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-8
Creating submenus   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-9

Moving existing menus to submenus  .  .  .  .  6-9
Attaching code to menu events.  .  .  .  .  .  .  .  .  . 6-10

Example: Invoking a dialog box from 
a menu item .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-10

Creating pop-up menus .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-11

Chapter 7
Advanced topics 7-1
Managing the component palette   .  .  .  .  .  .  .  .  7-1

Adding a component to the 
component palette  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7-2

Selecting an image for a component 
palette button .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7-4

Adding a page to the component palette  .  .  7-5
Removing a page or component from 

the component palette  .  .  .  .  .  .  .  .  .  .  .  .  7-6
Reorganizing the component palette .  .  .  .  .  7-6

Serializing.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7-6
Serializing components in JBuilder.  .  .  .  .  .  7-7
Serializing a this object.  .  .  .  .  .  .  .  .  .  .  .  .  7-8

Using customizers in the designer .  .  .  .  .  .  .  .  7-9
Modifying beans with customizers.  .  .  .  .  .  7-9

Handling resource bundle strings  .  .  .  .  .  .  .  . 7-10

Chapter 8
Using layout managers 8-1
About layout managers .  .  .  .  .  .  .  .  .  .  .  .  .  .  8-1

Using null and XYLayout .  .  .  .  .  .  .  .  .  .  .  8-2
Understanding layout properties.  .  .  .  .  .  .  8-3
Understanding layout constraints  .  .  .  .  .  .  8-3

Examples of layout properties and 
constraints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-4

Selecting a new layout for a container  .  .  .  .  .  . 8-4
Modifying layout properties .  .  .  .  .  .  .  .  .  . 8-5
Modifying component layout constraints   .  . 8-5

Understanding sizing properties  .  .  .  .  .  .  .  .  . 8-6
Determining the size and location of your 

UI window at runtime  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7
Sizing a window automatically with 

pack() .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-7
Calculating preferredSize for containers  .  .  . 8-8

Portable layouts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-8
XYLayout .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-8

Explicitly setting the size of a window 
using setSize()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-8

Making the size of your UI portable to 
various platforms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-9

Positioning a window on the screen.  .  .  .  .  . 8-9
Placing the sizing and positioning 

method calls in your code   .  .  .  .  .  .  .  .  . 8-10
Adding custom layout managers .  .  .  .  .  .  .  . 8-10
Layouts provided with JBuilder.  .  .  .  .  .  .  .  .  8-11
XYLayout   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-12

Aligning components in XYLayout .  .  .  .  . 8-13
Alignment options for XYLayout  .  .  .  .  .  . 8-14
null  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-14

BorderLayout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-15
Setting constraints.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-16

FlowLayout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-17
Alignment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-17

Gap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-18
Order of components  .  .  .  .  .  .  .  .  .  .  . 8-18

VerticalFlowLayout .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-18
Alignment   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Gap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Horizontal fill   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-19
Vertical fill   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-20
Order of components  .  .  .  .  .  .  .  .  .  .  . 8-20

BoxLayout2   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-20
GridLayout   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21

Columns and rows  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21
Gap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-21

CardLayout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-22
Creating a CardLayout container  .  .  .  .  .  . 8-22
Creating the controls  .  .  .  .  .  .  .  .  .  .  .  .  . 8-23
Specifying the gap.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-23
OverlayLayout2 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-24



iii

GridBagLayout .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-24
Display area .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-25
About GridBagConstraints  .  .  .  .  .  .  .  .  .  . 8-27

Setting GridBagConstraints 
manually in the source code .  .  .  .  .  .  . 8-28

Modifying existing GridBagLayout 
code to work in the designer   .  .  .  .  .  .  .  . 8-29

Designing GridBagLayout visually in 
the designer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-29

Converting to GridBagLayout   .  .  .  .  .  .  .  . 8-29
Adding components to a 

GridBagLayout container  .  .  .  .  .  .  .  .  .  . 8-31
Setting GridBagConstraints in the 

GridBagConstraints Editor   .  .  .  .  .  .  .  .  .8-32
Displaying the grid .  .  .  .  .  .  .  .  .  .  .  .  . 8-33
Using the mouse to change 

constraints .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-33
Using the GridBagLayout context 

menu .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-33
GridBagConstraints   .  .  .  .  .  .  .  .  .  .  .  . 8-34

anchor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-34
Setting the anchor constraint in the 

designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-34
fill   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-35

Specifying the fill constraint in the 
designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-35

gridwidth, gridheight  .  .  .  .  .  .  .  .  .  .  .  .  .8-35
Specifying gridwidth and gridheight 

constraints in the designer .  .  .  .  .  .  .  . 8-36
gridx, gridy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8-36

Specifying the grid cell location in the 
designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-36

insets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8-37
Setting inset values in the designer .  .  .  . 8-37

ipadx, ipady.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-38
Setting the size of internal padding 

constraints in the designer .  .  .  .  .  .  .  . 8-39
weightx, weighty .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-40

Setting weightx and weighty 
constraints in the designer .  .  .  .  .  .  .  . 8-40

Examples of how weight constraints 
affect components' behavior .  .  .  .  .  .  . 8-41

Sample GridBagLayout source code .  .  .  .  . 8-43
PaneLayout .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-46

PaneConstraints variables .  .  .  .  .  .  .  .  .  .  .8-46
How components are added to 

PaneLayout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-47
Creating a PaneLayout container in 

the designer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-47

Modifying the component location and 
size in the Inspector .  .  .  .  .  .  .  .  .  .  .  .  . 8-49

Prototyping your UI  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-50
Use XYLayout and null layout for 

prototyping.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8-50
Design the big regions first .  .  .  .  .  .  .  .  .  . 8-50
Save before experimenting .  .  .  .  .  .  .  .  .  . 8-51

Using nested panels and layouts  .  .  .  .  .  .  .  . 8-51

Chapter 9
Tutorial: Building a Java text editor 9-1
What this tutorial demonstrates.  .  .  .  .  .  .  .  .  . 9-1

Sample code for this tutorial .  .  .  .  .  .  .  .  .  . 9-2
Step 1: Setting up  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3

Creating the project .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-3
Selecting the project’s code style options .  .  . 9-4
Using the Application wizard  .  .  .  .  .  .  .  .  . 9-5
Suppressing automatic hiding of JFrame .  .  . 9-7
Setting the look and feel   .  .  .  .  .  .  .  .  .  .  .  . 9-8

Step 2: Adding a text area  .  .  .  .  .  .  .  .  .  .  .  .  . 9-9
Step 3: Creating the menus.  .  .  .  .  .  .  .  .  .  .  . 9-13
Step 4: Adding a FontChooser dialog.  .  .  .  .  . 9-15

Setting the dialog’s frame and title 
properties.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-16

Creating an event to launch the 
FontChooser  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-16

Step 5: Attaching a menu item event to 
the FontChooser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-18

Step 6: Attaching menu item events to 
JColorChooser .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-20

Step 7: Adding a menu event handler to 
clear the text area  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-21

Step 8: Adding a file chooser dialog   .  .  .  .  .  . 9-22
Internationalizing Swing components   .  .  . 9-22

Step 9: Adding code to read text from a file  .  . 9-23
Step 10: Adding code to menu items for 

saving a file   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-25
Step 11: Adding code to test if a file has 

been modified .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-28
Step 12: Activating the toolbar buttons .  .  .  .  . 9-30

Specifying button tool tip text  .  .  .  .  .  .  .  . 9-30
Creating the button events .  .  .  .  .  .  .  .  .  . 9-31
Creating a fileOpen() method  .  .  .  .  .  .  .  . 9-31
Creating a helpAbout() method .  .  .  .  .  .  . 9-32

Step 13: Hooking up event handling to 
the text area  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-33

Step 14: Adding a context menu to the 
text area   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-35



iv

Step 15: Showing filename and state in 
the window title bar .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-37

Step 16: Deploying the Text Editor 
application to a JAR file .  .  .  .  .  .  .  .  .  .  .  .  .9-40

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .9-41
Running the Archive Builder  .  .  .  .  .  .  .  .  . 9-41
Testing the deployed application from 

the command line.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-47
Modifying the JAR file and retesting the 

application.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-48

Chapter 10
Tutorial: Creating a UI with 
nested layouts 10-1

Step 1: Creating the UI project  .  .  .  .  .  .  .  .  .  . 10-3
Using the Project wizard.  .  .  .  .  .  .  .  .  .  .  . 10-3

Step 2: Generating the application source 
files.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10-4

Using the Application wizard.  .  .  .  .  .  .  .  . 10-4
Step 3: Changing contentPane’s layout  .  .  .  .  . 10-7
Step 4: Adding the main panels   .  .  .  .  .  .  .  .  .10-8
Step 5: Creating toolbars   .  .  .  .  .  .  .  .  .  .  .  . 10-11
Step 6: Adding toolbar buttons .  .  .  .  .  .  .  .  . 10-12
Step 7: Adding components to the middle 

panel .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10-15
Step 8: Creating a status bar   .  .  .  .  .  .  .  .  .  . 10-16
Step 9: Converting to portable layouts   .  .  .  . 10-17
Step 10: Completing your layout .  .  .  .  .  .  .  . 10-19

Chapter 11
GridBagLayout tutorial 11-1
Introduction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-1
Part 1: About GridBagLayout   .  .  .  .  .  .  .  .  .  . 11-2

Overview of GridBagLayout  .  .  .  .  .  .  .  .  . 11-2
What is GridBagLayout?   .  .  .  .  .  .  .  .  .  .  . 11-3
What is the component’s display area?   .  .  . 11-4
What are GridBagConstraints?  .  .  .  .  .  .  .  . 11-5
Why is GridBagLayout so complicated?.  .  . 11-6
Why use GridBagLayout? .  .  .  .  .  .  .  .  .  .  . 11-7
Simplifying GridBagLayout.  .  .  .  .  .  .  .  .  . 11-8

Sketch your design on paper first .  .  .  .  . 11-8
Use nested panels and layouts   .  .  .  .  . 11-11
Use the JBuilder visual designer   .  .  .  . 11-12
Prototype your UI in XYLayout .  .  .  .  . 11-14

Part 2: Creating a GridBagLayout in JBuilder  .11-16
About the design   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-16
Step 1: Design the layout structure  .  .  .  .  .11-17
Step 2: Create a project for this tutorial .  .  .11-22
Step 3: Add the components to the 

containers.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-22
Add the main panel to the UI frame .  .  .11-23
Create the left panel and add its 

components .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-24
Create the right panel and add its 

components .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-26
Create the bottom panel and add its 

components .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-27
Step 4: Convert the outer panel to 

GridBagLayout.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-28
Step 5: Convert the upper panels to 

GridBagLayout.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-28
Step 6: Convert the lower panel to 

GridLayout .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-29
Step 7: Make final adjustments   .  .  .  .  .  .  .11-29

GridLayout panel  .  .  .  .  .  .  .  .  .  .  .  .  .11-31
Upper panels .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-34

Conclusion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-39
Part 3: Tips and techniques   .  .  .  .  .  .  .  .  .  .  .11-39

Setting individual constraints in the 
designer.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-39

anchor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-39
fill  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-40
insets   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-40
gridwidth, gridheight .  .  .  .  .  .  .  .  .  .  .11-42
ipadx, ipady   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-42
gridx, gridy .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-44
weightx, weighty   .  .  .  .  .  .  .  .  .  .  .  .  .11-45
Behavior of weight constraints .  .  .  .  .  .11-45

Using drag and drop to edit constraints  .  .11-48
Dragging a component to an 

empty cell .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-49
Dragging a component to an 

occupied cell  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-51
Dragging a large component into 

a small cell   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-53
Dragging the black sizing nibs into 

an adjacent empty cell .  .  .  .  .  .  .  .  .  .11-54
Adding components   .  .  .  .  .  .  .  .  .  .  .  .  .11-56



v

Miscellaneous tips  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-58
Switch back to XYLayout for major 

adjustments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-58
Remove weights and fill before 

making adjustments   .  .  .  .  .  .  .  .  .  . 11-58
Making existing GridBagLayout code 

visually designable .  .  .  .  .  .  .  .  .  .  .  .  . 11-59
Differences in code  .  .  .  .  .  .  .  .  .  .  .  . 11-59
Modifying code to work in the 

designer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-59
Code generated by JBuilder in Part 2 .  . 11-60
Other resources on GridBagLayout .  .  . 11-62

GridBagConstraints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-62
anchor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-62
fill   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-63

insets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-63
gridwidth, gridheight .  .  .  .  .  .  .  .  .  .  .  .  .11-64
ipadx, ipady  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-64
gridx, gridy.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-65
weightx, weighty  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11-66

Examples of weight constraints .  .  .  .  .  .  .  .  .11-67

Appendix A
Migrating files from other Java IDEs A-1
VisualAge  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  A-1
Forte  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  A-2
VisualCafé .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  A-2

Index I-1



vi

Building a Java text editor   .  .  .  .  .  .  .  .  .  .  .  .  9-1
Creating a UI with nested layouts  .  .  .  .  .  .  .  . 10-1
GridBagLayout tutorial  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11-1

Tutorials



V i s u a l  d e s i g n  i n  J B u i l d e r 1-1

C h a p t e r

1
Chapter1Visual design in JBuilder

JBuilder’s designer allows you to create and change visually designable 
files quickly and efficiently. This documentation explores the four visible 
aspects of the designer — the component tree, the design surface, the 
Inspector, and the component palette — and walks you through designing 
a user interface and creating menus. Tutorials follow that explore design, 
event-handling, and layout managers in greater detail.

See also

• “Using the AppBrowser” in Introducing JBuilder to review the layout 
and terminology of the AppBrowser.

Building Applications with JBuilder contains the following chapters:

• Chapter 2, “Introducing the designer”

Provides an overview of the visual design tools in JBuilder. Names the 
different parts of the designer and describes what each part does and 
how it relates to the others. Explains the different types of designer, 
such as the UI designer and the Menu designer.

• Chapter 3, “Using the component tree and Inspector”

Explains how to use the component tree and the Inspector. Describes 
how they work together to handle and edit components.

• Chapter 4, “Handling events”

Describes how to add and delete event handlers for components using 
the Inspector. Gives specific examples of how to code commonly used 
event handlers for the JBuilder dialog components.



1-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

V i s u a l  d e s i g n  i n  J B u i l d e r

• Chapter 5, “Creating user interfaces”

Explains how to design a user interface using JBuilder’s visual design 
tools. Also explains how to attach code to a component’s event 
handlers, and gives specific examples of how to hook up common 
events to UI elements such as menus and toolbar buttons.

• Chapter 6, “Designing menus”

Explains how to create menus using JBuilder’s Menu designer.

• Chapter 7, “Advanced topics”

Provides information on advanced topics and topics pertinent to 
distributed application development. Explains how to serialize in 
JBuilder, create customizers, and handle resource bundles.

• Chapter 8, “Using layout managers”

Explains Java layout managers and describes how to work with each of 
the layout managers within the UI designer.

• Tutorials:

• Chapter 9, “Tutorial: Building a Java text editor”

Create and deploy a real application to load, edit, and save text files.

• Chapter 10, “Tutorial: Creating a UI with nested layouts”

Design a user interface with nested panels and layouts.

• Chapter 11, “GridBagLayout tutorial”

Learn how to use GridBagLayout. Create a GridBagLayout UI 
container in the UI designer.

• Appendix A, “Migrating files from other Java IDEs”

Explains how to handle code developed in other Java IDEs so the file 
can be visually designed using JBuilder’s visual design tools.



V i s u a l  d e s i g n  i n  J B u i l d e r 1-3

D o c u m e n t a t i o n  c o n v e n t i o n s

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols 
described in the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Monospaced type Monospaced type represents the following:
• text as it appears onscreen
• anything you must type, such as “Type Hello World in the 

Title field of the Application wizard.”
• file names
• path names
• directory and folder names
• commands, such as SET PATH
• Java code
• Java data types, such as boolean, int, and long.
• Java identifiers, such as names of variables, classes, package 

names, interfaces, components, properties, methods, and 
events

• argument names
• field names
• Java keywords, such as void and static

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj 
(Borland Compiler for Java), and compiler options. For example: 
javac, bmj, -classpath.

Italics Italicized words are used for new terms being defined, for book 
titles, and occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press 
Esc to exit a menu.”

[ ] Square brackets in text or syntax listings enclose optional items. 
Do not type the brackets.

< > Angle brackets are used to indicate variables in directory paths, 
command options, and code samples.
For example, <filename> may be used to indicate where you need 
to supply a file name (including file extension), and <username> 
typically indicates that you must provide your user name.
When replacing variables in directory paths, command options, 
and code samples, replace the entire variable, including the 
angle brackets (< >). For example, you would replace <filename> 
with the name of a file, such as employee.jds, and omit the angle 
brackets.
Note: Angle brackets are used in HTML, XML, JSP, and other 
tag-based files to demarcate document elements, such as <font 
color=red> and <ejb-jar>. The following convention describes 
how variable strings are specified within code samples that are 
already using angle brackets for delimiters.



1-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

D e v e l o p e r  s u p p o r t  a n d  r e s o u r c e s

JBuilder is available on multiple platforms. See the following table for a 
description of platform conventions used in the documentation.

Developer support and resources
Borland provides a variety of support options and information resources 
to help developers get the most out of their Borland products. These 
options include a range of Borland Technical Support programs, as well as 
free services on the Internet, where you can search our extensive 
information base and connect with other users of Borland products.

Contacting Borland Technical Support

Borland offers several support programs for customers and prospective 
customers. You can choose from several categories of support, ranging 
from free support on installation of the Borland product to fee-based 
consultant-level support and extensive assistance.

Italics, serif This formatting is used to indicate variable strings within code 
samples that are already using angle brackets as delimiters. For 
example, <url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (...) indicates code that has been 
omitted from the example to save space and improve clarity. On 
a button, an ellipsis indicates that the button links to a selection 
dialog box.

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a 
forward slash (/).
For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform 
and is indicated with a variable, <home>.
• For UNIX and Linux, the home directory can vary. For 

example, it could be /user/<username> or /home/<username>
• For Windows NT, the home directory is C:\Winnt\Profiles\

<username>

• For Windows 2000, the home directory is C:\Documents and 
Settings\<username>

Screen shots Screen shots reflect the Metal Look & Feel on various 
platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning



V i s u a l  d e s i g n  i n  J B u i l d e r 1-5

D e v e l o p e r  s u p p o r t  a n d  r e s o u r c e s

For more information about Borland’s developer support services, see our 
web site at http://www.borland.com/devsupport/, call Borland Assist at (800) 
523-7070, or contact our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information 
about your environment, the version of the product you are using, and a 
detailed description of the problem.

For support on third-party tools or documentation, contact the vendor of 
the tool.

Online resources

You can get information from any of these online sources:

World Wide Web

Check www.borland.com/jbuilder regularly. This is where the Java Products 
Development Team posts white papers, competitive analyses, answers to 
frequently asked questions, sample applications, updated software, 
updated documentation, and information about new and existing 
products.

You may want to check these URLs in particular:

• http://www.borland.com/jbuilder/ (updated software and other files)

• http://www.borland.com/techpubs/jbuilder/ (updated documentation and 
other files)

• http://community.borland.com/ (contains our web-based news magazine 
for developers)

Borland newsgroups

You can register JBuilder and participate in many threaded discussion 
groups devoted to JBuilder. The Borland newsgroups provide a means for 
the global community of Borland customers to exchange tips and 
techniques about Borland products and related tools and technologies.

World Wide Web http://www.borland.com/

FTP ftp://ftp.borland.com/

Technical documents available by anonymous ftp.

Listserv To subscribe to electronic newsletters, use the online 
form at: 
http://info.borland.com/contact/listserv.html

or, for Borland’s international listserver, 
http://info.borland.com/contact/intlist.html



1-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

R e q u i r e m e n t s  f o r  a  c l a s s  t o  b e  v i s u a l l y  d e s i g n a b l e

You can find user-supported newsgroups for JBuilder and other Borland 
products at http://www.borland.com/newsgroups/.

Usenet newsgroups

The following Usenet groups are devoted to Java and related 
programming issues:

• news:comp.lang.java.advocacy 
• news:comp.lang.java.announce 
• news:comp.lang.java.beans 
• news:comp.lang.java.databases 
• news:comp.lang.java.gui 
• news:comp.lang.java.help 
• news:comp.lang.java.machine 
• news:comp.lang.java.programmer 
• news:comp.lang.java.security 
• news:comp.lang.java.softwaretools 

Note These newsgroups are maintained by users and are not official Borland 
sites.

Reporting bugs

If you find what you think may be a bug in the software, please report it in 
the Support Programs page at http://www.borland.com/devsupport/namerica/. 
Click the “Reporting Defects” link to bring up the Entry Form.

When you report a bug, please include all the steps needed to reproduce 
the bug, including any special environmental settings you used and other 
programs you were using with JBuilder. Please be specific about the 
expected behavior versus what actually happened.

If you have comments (compliments, suggestions, or issues) for the 
JBuilder documentation team, you may email jpgpubs@borland.com. This is 
for documentation issues only. Please note that you must address support 
issues to developer support.

JBuilder is made by developers for developers. We really value your 
input.

Requirements for a class to be visually designable
For a file to be visually designable, it must

• Be a .java file.

• Be free from syntax errors.

• Use a default public constructor.



V i s u a l  d e s i g n  i n  J B u i l d e r 1-7

S t a r t i n g  w i t h  w i z a r d s

• Define a class whose name matches the file name.

• The defined class must not be an inner or anonymous class.

Any file that meets the above requirements can be designed using the 
component tree and the Inspector. This allows you to visually design 
non-UI classes.

Note JavaBeans meet these requirements. These requirements are also met 
when you create your files with JBuilder’s JavaBean, Application, Applet, 
Frame, Panel, and Dialog wizards.

When you first add a component to your design, the JBuilder visual 
design tools will make sure that

• The class has a default public constructor.

• The class has a private jbInit() method.

• This jbInit() method is called correctly from the default constructor.

If JBuilder doesn’t find this constructor, it adds it. It also adds any imports 
needed by the component.

Important If you are migrating files from other Java IDEs into JBuilder, you might 
need to modify your code so JBuilder’s designers can work with the files. 
JBuilder’s visual design tools can recognize VisualAge files as long as they 
meet the requirements of a visually designable file.

See also

• Appendix A, “Migrating files from other Java IDEs”

Starting with wizards
The first step in designing a user interface with JBuilder is to create or 
open a designable container class, such as a Frame or a Panel. Choose File|
New to open the object gallery. Several pages of the object gallery provide 
access to wizards that generate visually designable files, including Applet, 
Application, and Dialog.

The wizards import all necessary packages. Just open the container file, 
click the Design tab in the content pane, and start using the designer.

Note You can add additional frames, panels, and dialog boxes to your project 
by choosing File|New and selecting the appropriate wizard from the 
object gallery.



1-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U n d e r s t a n d i n g  J a v a B e a n s

Understanding JavaBeans
JavaBeans are self-contained classes that don’t need any other classes to 
complete them, but are designed to be customized and to communicate 
effectively with others so they can work together gracefully. Think of a 
metaphor: a wheel is designed to rotate around a central axle, and can do 
that without any further tooling. Wheels can be customized to fit under 
cars or inside pulleys, where they interface with the other components of 
the design to perform a larger function.

JavaBeans must support these features:

A JavaBean may also have a BeanInfo class. BeanInfo describes its 
component to the design tools clearly and effectively. JBuilder looks first 
for BeanInfo for a bean, and where it doesn’t find it, it uses introspection 
to discover the bean’s characteristic design patterns.

JavaBeans describe components. Components are the building blocks used 
by JBuilder’s visual design tools to build a program. You build your 
program by choosing, customizing, and connecting components. JBuilder 
comes with a set of ready-to-use components on the component palette. 
Supplement these by creating new components or by installing 
third-party components.

Examine JavaBeans using BeanInsight. Select Tools|BeanInsight and type 
in the name of any compiled bean to examine its properties, events, 
customizers, and so on.

See also

• The JavaBeans specification at 
http://www.javasoft.com/beans/docs/spec.html.

• “Managing the component palette” on page 7-1

Understanding containers

Containers are a special type of component that hold and manage other 
components. Containers extend java.awt.Container. Containers generally 
appear as panels, frames, and dialog boxes in a running program. 
Generally, your visible design work in JBuilder takes place in containers.

Introspection Lets beans be analyzed.

Customization Lets the appearance and behavior of beans be tailored as 
needed.

Events Allow beans to communicate.

Persistence Lets a bean’s runtime state be saved.



V i s u a l  d e s i g n  i n  J B u i l d e r 1-9

U n d e r s t a n d i n g  J a v a B e a n s

Types of containers
• A window is a stand-alone, top-level container component without 

borders, title bar, or menu bar. Although a window can be used to 
implement a pop-up window, such as a splash-screen, it’s more 
common to use a subclass of java.awt.Window in your UI, such as one of 
those listed below, rather than the actual Window class.

• A panel is a simple UI container, without border or caption, used to 
group other components, such as buttons, check boxes, and text fields. 
A panel is embedded within some other UI component, such as Frame or 
Dialog. It can also be nested within other panels.

Frame A top-level window with a border and a title. A frame 
has standard window controls such as a control menu, 
buttons to minimize and maximize the window, and 
controls to resize the window. It can also contain a menu 
bar.

Typically, the main UI container for a Java application, 
as opposed to an applet, is a customized subclass of 
java.awt.Frame. The customization typically instantiates 
and positions other components on the frame, sets 
labels, attaches controls to data, and so forth.

Dialog A pop-up window, similar to a frame, but it can’t 
contain a menu bar. A dialog is used for getting input 
and giving warnings, and is usually intended to be 
temporary. It can be one of the following types: 

Modal dialog: Prevents input to any other windows in 
the application until that dialog is dismissed. 

Modeless dialog: Allows information to be entered in 
both the dialog and the application.

File dialog A basic system-independent File Open/Save dialog box 
that enables access to the file system.

Applet A subclass of Panel used to build a program intended to 
be embedded in an HTML page and run in an HTML 
browser or applet viewer. Since Applet is a subclass of 
Panel, it can contain components but does not have a 
border or caption.



1-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U n d e r s t a n d i n g  J a v a B e a n s

Understanding component libraries

Component libraries are collections of ready-made components.

JBuilder supplies several libraries of JavaBean components on the 
component palette for user interface design, including

• Java AWT

• Java Swing

• JBuilder dbSwing in JBuilder Enterprise

Components in a single library generally share an important high-level 
commonality. Where component features overlap within or between 
libraries, differences in behavior, look and feel, or requirements of the 
components can help you decide which component to choose.

For instance, AWT components have the advantage of being compatible 
with both older and newer versions of internet browsers. They have the 
disadvantage of being heavyweight, resulting in sluggish performance. 
Swing components have the advantage of being lightweight, delivering 
more sprightly performance. Browser compatibility is less and less of a 
problem as time goes on. The dbSwing library that JBuilder Enterprise 
supplies consists of subclasses of Swing components that have the added 
advantage of a dataSet property and a columnName property to make the 
Swing components data-aware.

By comparing components that perform related tasks, you can determine 
which components are best suited to a particular task. In many cases, 
several components can perform the desired action, but you might choose 
one based on how it looks and works, how easy it is to use, or whether it 
makes sense for the tools you expect your target audience to have.



I n t r o d u c i n g  t h e  d e s i g n e r 2-1

C h a p t e r

2
Chapter2Introducing the designer

The designer consists of features that allow you to visually design classes 
containing default public constructors. The designer is a collective term 
for several design tools that are tailored to do different types of design. 
These include the UI designer, the Menu designer, the Data access 
designer, and the Default designer. The Default designer is for 
components that don’t fit into any of the other three categories. When you 
access the designer, JBuilder opens the type of designer that’s appropriate 
for the active file.

The designer is an OpenTool. Advanced users who want to learn to add a 
designer type or otherwise customize the designer, choose Help|Help 
Topics, select the Contents tab, and open OpenTools Documentation. 
Read the JBuilder Designer/CMT OpenTools Concepts topic under 
Developing OpenTools. Package com.borland.jbuilder.cmt and Package 
com.borland.jbuilder.designer APIs are under OpenTools API Reference.

Using the designer
Click the Design tab of the content pane to access the designer. When the 
designer is active, the working areas of the AppBrowser change to 
accommodate design tasks:

• The content pane shows the design surface.

The content pane also contains:

• The component palette, displayed at the top of the content pane.

• The Inspector, displayed on the right margin of the content pane.

• The structure pane shows the component tree.



2-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  d e s i g n e r

The component that’s selected, either in the component tree or on the 
design surface, is highlighted in the component tree and reflected in the 
Inspector. The status bar indicates the component the cursor rests on on 
the design surface.

Figure 2.1 The designer

In this example,

• The jScrollPane1 component is selected.

We can tell because it’s highlighted in the component tree, its handle or 
nib is visible on the design surface, and it’s the active component in the 
Inspector.

• The pointer is on the design surface, hovering over the jToolBar 
component. 

We can tell because the name of the component appears in the status 
bar.

If this user clicked the mouse in its present location, then jToolBar would 
be selected, highlighted in the component tree, and reflected in the 
Inspector, as well as displayed in the status bar.



I n t r o d u c i n g  t h e  d e s i g n e r 2-3

U s i n g  t h e  d e s i g n e r

JBuilder’s Two-Way Tools technology keeps the different parts of the 
designer and the source code synchronized. It immediately changes the 
code according to changes made in the designer, and changes the design 
in the designer to reflect changes made in the code.

The design surface

The design surface is your virtual sketch pad. You can add or remove 
components directly on it, edit the size of components, and see what your 
overall design looks like as it evolves.

Select a visible component on the design surface to make it appear in the 
Inspector, where you can edit its properties.

Select a container on the design surface to nest another component inside 
it or to activate its handles. In most layout managers, you can grab 
handles with your mouse to change a component’s size or location.

Adjust the size of the design surface itself by dragging the left border of 
the content pane. To hide the AppBrowser’s left-hand panes, choose 
View|Hide All, but keep in mind that this includes the component tree. 
To bring the left-hand panes back into view, choose View|Show All.

All properties that can be changed on the design surface can also be 
changed in the Inspector.

See also

• Chapter 8, “Using layout managers”

• “Using the Inspector” on page 3-6

• Chapter 4, “Handling events”

Pinpointing a component
Within a complex design, it can be difficult to tell exactly which of several 
likely components you’re on, on the design surface. The status bar 
eliminates all confusion.

As you move the mouse pointer over a component on the design surface, 
the status bar at the bottom of the AppBrowser displays the name of the 
component. This is especially useful if the component you are trying to 
select is hidden or invisible in the designer, such as a single panel in a 
CardLayout stack. If the panel containing the component is in XYLayout, the 
status bar also displays the x,y coordinates.



2-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  d e s i g n e r

See also

• “Selecting components in the UI” on page 5-2 for more on handling 
components on the design surface.

The component palette

The component palette provides quick access to all available component 
libraries. Choose the tab containing the types of components you want. 
Rest your cursor over a component’s icon to display a tooltip with the 
component’s name. The component palette is customizable.

Add a component in any of these ways:

• Select a component in the component palette and click on the design 
surface where you want the component’s upper left corner to be.

The component drops onto the design surface. Its upper left corner 
lands where you clicked. The component also appears in the 
component tree.

• Select a component in the component palette and click in the 
appropriate hierarchical location in the component tree. 

The component drops into the component tree. If it’s a visible 
component, it’s visible in the appropriate place on the design surface.

• Choose Edit|Add Component.

The Add Component dialog box appears. Select a component library 
and choose a component, then click OK.

The component appears in the component tree. If it’s a visible 
component, it appears in the appropriate place on the design surface.

See also

• “Adding components” on page 3-3

• “Managing the component palette” on page 7-1

Using the Bean Chooser
The Bean Chooser button is at the left edge of the component palette 
under the Selection Arrow. It displays a user-defined list of beans. When 
you choose a bean from the list, the Bean Chooser loads your mouse 
cursor with a reference to the bean, just as if you had clicked a component 
on the palette. When you click the design surface, it adds the bean you 
chose.



I n t r o d u c i n g  t h e  d e s i g n e r 2-5

U s i n g  t h e  d e s i g n e r

To add a bean to the Bean Chooser drop-down list,

1 Make sure the library that contains the bean is listed as a required 
library for your project in the Project Properties dialog box. If not, then 
add the library.

2 Click the Bean Chooser button and choose Select from the menu.

This displays the Bean Chooser dialog box.

3 Use either the Search page or the Browse page:

• In the Search page, start typing the bean name in the Search For field.

• In the Browse page, either start typing the fully qualified name or 
expand the nodes until you locate the bean you want.

The Search page can find the bean using only its short name. The 
Browse page requires you to select from the tree or to type in the fully-
qualified class name.

4 Select the bean and click OK.

5 Click the Bean Chooser button again. 

Notice that a drop-down menu now appears containing the new Java 
Bean.

When you want to use that bean when working on the same project, click 
the Bean Chooser button and select the bean from the menu.

See also

• “Adding and configuring libraries” in Building Applications with 
JBuilder.



2-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  d e s i g n e r

The Inspector

The Inspector displays the properties and events of the selected 
component, and provides right-click context menus, editable text fields, 
and other controls to allow you to edit properties and events. Custom 
editors can be used along with the Inspector. Select a component in the 
component tree or on the design surface to display its properties and 
events in the Inspector.

Click the Properties tab to view and edit a component’s properties. Click 
the Events tab to view and edit a component’s events.

Adjust the size of the Inspector by dragging the left border of the 
Inspector.

See also

• “Using the Inspector” on page 3-6

• “Using customizers in the designer” on page 7-9

The component tree

The component tree provides access to each type of available designer and 
provides a hierarchical view of the components in the active file. It also 
acts as a component manager, allowing you to add and remove 
components and rearrange the components in the design hierarchy.

Select a designer type by selecting the appropriate folder in the 
component tree: Menu, UI, Data Access, or Default. When you click the 
Design tab, the designer automatically opens to the type of designer 
appropriate to the active file’s outer container. You may want to choose 
other designers to work on components either within, or referenced by, 
the active file.

Select a component in the component tree to put focus on it on the design 
surface and to display that component’s properties and events in the 
Inspector.

To move a component within the component tree:

1 Select it.

2 Cut it, using either the keyboard shortcut, the Edit menu, or the right-
click menu.

3 Select the component that will be immediately above it in its new 
location.

4 Paste the cut component in.



I n t r o d u c i n g  t h e  d e s i g n e r 2-7

D e s i g n e r  c a t e g o r i e s

See also

• “Using the component tree” on page 3-1

• “Using the Inspector” on page 3-6

Designer categories
JBuilder provides individual designers for four broad categories of 
JavaBeans:

• UI designer

• Menu designer

JBuilder Enterprise • Data Access designer

• Default designer

Each of these designers provides a set of features that makes designing its 
particular type of component easier. Change from one designer type to the 
next by activating components inside the type of designer you want to 
open. Switch between designer types in one of three ways:

• Double-click a component of the desired designer type in the 
component tree.

• Select a component of the desired designer type in the component tree 
and press Enter.

• Right-click a component of the desired designer type in the component 
tree and choose Activate Designer.

UI designer

UI components are the elements of the program that the user can see and 
interact with at runtime. They derive ultimately from java.awt.Component. 
In the designer, UI components that are normally visible at runtime 
appear in the UI designer. UI components that normally don’t show, such 
as pop-up menus, appear in the Default folder of the component tree.

Whenever possible, JBuilder’s UI components are “live” at design time. 
For example, a list displays its list of items, or a data grid connected to an 
active data set displays current data.

See also

• Chapter 5, “Creating user interfaces”



2-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

D e s i g n e r  c a t e g o r i e s

Menu designer

Menu components derive from java.awt.MenuComponent. At design time, 
JBuilder displays menu components in the Menu folder in the component 
tree and provides a special Menu designer.

See also

• Chapter 6, “Designing menus”

Data Access designer

This is a feature of
JBuilder Enterprise.

Data access components are non-UI components used in a database 
application to connect controls to data. Data access components do not 
appear in the UI container at design time, but they do appear in the 
component tree in the Data Access folder. Select a data access component in 
the component tree to make its properties and events accessible in the 
Inspector.

See also

• “Database components” on page 5-8

• “DataExpress components” in the Database Application Developer’s 
Guide.

Default designer

The default designer provides visual design tools for components that 
aren’t surface UI, menu, or data access components. Examples of these 
may include pop-up UI elements, such as dialog boxes, or non-UI 
JavaBean components such as buttonGroup. Select these components from 
the Default folder in the component tree to activate the default designer.

Once you understand how to use the component tree, the design surface, 
the component palette, and the Inspector, you know how to use the 
default designer.

Keyboarding in the designer

There are two types of keyboard shortcuts: navigational shortcuts that 
move focus from one area to another, and action shortcuts, usually 
involving the keyboard and mouse, that simplify working in the designer.



I n t r o d u c i n g  t h e  d e s i g n e r 2-9

D e s i g n e r  c a t e g o r i e s

Navigational shortcuts
Use either the mouse, the Tab key alone, the Ctrl + Tab keys, or the arrow 
keys to navigate through the designer. Combine these keystrokes with the 
Shift key to move focus in reverse order. When you use the Tab or Ctrl + Tab 
keystrokes, focus moves in the following order:

• Project pane
• Component tree
• Component palette
• Design surface (use Ctrl + Tab to move out)
• Inspector

Action shortcuts
Below are keyboard/mouse shortcuts that facilitate working in the 
designer:

Keystroke Action

Ctrl+Click Individually select/deselect multiple components in 
component tree or on the design surface.

Shift+Click Drop multiple instances of a component onto the design 
surface. Use the Selection Arrow on the component palette to 
turn off the selection.

Shift+F10 Display the design surface’s useful context menu for the 
component selected in the component tree.

Ctrl+X Cut a selection from the design surface or the component tree 
to the Clipboard.

Ctrl+C Copy a selection to the Clipboard from the design surface or 
the component tree.

Ctrl+V Paste the contents of the Clipboard onto the design surface or 
the component tree at the location of the cursor.

Ctrl+Arrow Move the selected component one pixel in the direction of the 
arrow.

Ctrl+Shift+Arrow Move the selected component eight pixels in the direction of 
the arrow.

Ctrl+Z Undo the most recent action. Can use repeatedly for undoing 
multiple successive actions.

Ctrl+Shift+Z Redo the most recent undo. Can use repeatedly for redoing 
multiple successive undo’s.

Ctrl+Del or Del Delete the selection.

Shift+Drag Drag a rectangle around multiple components to select them 
on the design surface.

Shift+Drag Limit the move to orthogonal directions (up, down, right, left 
or at 45 degree angles).

Alt+Drag Drag a component into a parent container.

Click+Drag Drag the component to a new location.

Ctrl+Drag Drag a copy of the selected object to a new location.



2-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-1

C h a p t e r

3
Chapter3Using the component tree

and Inspector
The component tree and the Inspector provide access to all the 
components and all component properties and events in the active file. 
The component tree shows which designer you’re using, what 
components are in the active file, and which component is selected. The 
Inspector displays the properties and events belonging to the selected 
component. Select a component either on the design surface or in the 
component tree to view its properties in the Inspector. Rename a 
component in either the component tree or the Inspector.

Using the component tree
The component tree allows you to view and manage the components in a 
visually designable file. It shows all of the components in the active file 
and their relationships, the layout managers associated with UI 
containers, and the type of designer each component uses. It provides 
access to commands and controls for the designers and the components. 
Changes made in the component tree are immediately reflected in the 
Inspector, the design surface, and the source code.



3-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  c o m p o n e n t  t r e e

The component tree always shows exactly which component is selected, 
making accurate selection easy regardless of the type of component or the 
complexity of design.

The component tree allows you to view and manage designer types and 
components:

• Open a particular designer, such as the Menu designer.

• Add components to the class from the component palette.

• See a component’s name. 

• Select a component in the component tree to modify its properties and 
events in the Inspector.

• Select a component in the component tree to modify it on the design 
surface.

• Change the name of a component.

• Move a component to a different container or a different place in the 
hierarchy.

Before selecting existing components, be sure the Selection Arrow button 
on the component palette appears depressed. Otherwise you may 
accidentally place a new component on your design.

The component tree supports multiple selection:

• Use the Ctrl key and the cursor to add individual selections.

• Use the Shift key and the cursor to add contiguous selections.

• Hold down the left mouse button and draw a rectangle around the 
group of components you want to change.

Control the cursor either with the mouse or with the arrow keys.



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-3

U s i n g  t h e  c o m p o n e n t  t r e e

Opening particular designer types

Select the folder of the designer or any node inside it in the component 
tree.

For instance, with any other designer active, expand the Menu folder and 
select a menuBar component inside it to access the Menu designer. Menu 
components become available and menu-specific commands in the 
designer become accessible.

Adding components

Components can be added in either of two ways: using the mouse to drag 
and drop, or using the menus and keyboard to select.

Using menu commands
To add a component using menu commands

• Select a parent node in the component tree.

• Choose Edit|Add Component. 

The Add Component dialog appears. 

A list of component libraries is on the left. A list of the components 
available in the selected library appear on the right.

• Select or type in the component library and the component you want.

• Click OK. 

The component appears under the node you originally selected in the 
component tree.

Using the mouse
To add a component using the mouse

1 Click a component on the component palette.

2 Do one of the following. Choose a technique based on the type of 
component selected:

• All components. Click the target container in the component tree.

• Visible components. Click on the design surface. 

In null or XYLayout, the upper-left corner of the component is 
anchored where you clicked. 

An adjustable component appears at its default size.



3-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  c o m p o n e n t  t r e e

• Visible components. Click on the design surface and, holding the 
mouse button down, drag down or right to the desired size. 

In null or XYLayout, the upper-left corner of the component is 
anchored where you clicked.

Note Ultimately, the layout manager for each container in your UI will 
determine its components’ sizes and positions.

To add multiple instances of a component,

1 Press the Shift key while clicking a component on the component 
palette.

2 Click repeatedly on the design surface or in the component tree to add 
multiple instances of the component.

3 Clear the selection when you are done by clicking the component 
palette’s Selection Arrow button or by choosing another component on 
the palette.

Note Be sure to clear the selection. Otherwise, you may inadvertently create 
an extra, unwanted component.

See also

• Chapter 8, “Using layout managers,” for more information on null, 
XYLayout, and other layout managers.

Cutting, copying, and pasting components

To cut, copy, or paste components in the designer, select the components 
in either the design surface or the component tree, then do one of the 
following:

• Choose the command you want from the Edit menu, or use the 
appropriate shortcut keys for the function: 

• Right-click the selected components, then choose Cut, Copy, or Paste 
from the context menu.

Deleting components

To delete a component, select the component on the design surface or the 
component tree. Then, either choose Edit|Delete, use the keyboard 
shortcut defined for your keymap, or press the Del key.

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-5

U s i n g  t h e  c o m p o n e n t  t r e e

Using Undo and Redo

To undo or redo an action in the designer, do one of the following:

• Right-click anywhere on the design surface or the component tree, and 
choose Undo or Redo from the context menu.

• Click anywhere on the design surface or the component tree and 
choose Edit|Undo (Ctrl+Z) or Edit|Redo (Ctrl+Shift+Z).

You can undo multiple successive actions by choosing Undo repeatedly. 
This undoes your changes by stepping back through your actions and 
reverting your design through its previous states.

Redo reverses the effects of your last Undo. You can redo multiple 
successive actions by choosing Redo repeatedly. Redo is available only 
after an Undo command.

Changing a component name

You can change the name of a component in the component tree, as well 
as in the Inspector.

To change the name in the tree:

1 Select the component in the component tree.

2 Make the component name editable in one of the following ways:

• Press F2.

• Right-click the component name in the tree and choose Rename.

3 Type the text for the new name.

4 Press Enter.

The new name appears in place of the old one.

Moving a component

To move a component using the mouse, drag and drop it to its new 
location. Using the keyboard,

1 Select the component to be moved.

2 Cut it. Either right-click it and choose Cut, or choose Edit|Cut.

3 Select the component or folder immediately above where you want to 
paste the component.

4 Paste the new component in. Either right-click and choose Paste, or 
choose Edit|Paste.



3-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  I n s p e c t o r

Viewing component class names

Put your cursor over the component name. The class name appears in a 
tooltip.

Understanding component tree icons

The following is an explanation of the icons used to represent the various 
nodes in the component tree:

Icons for individual components (panes, buttons, and so on) are generally 
miniature versions of the icons used in the component palette.

Using the Inspector
The Inspector appears in the right side of the content pane in the designer. 
It lets you visually edit component properties and attach handlers to 
component events. Select a component in either the design surface or the 
component tree to display its attributes in the Inspector. View and edit 
properties on the Properties tab, which displays all supported properties. 
View and edit events on the Events tab, which displays all supported 
events.

In the image below, a toolBar component is selected and the Properties tab 
is visible.

Icon Explanation

The current file.

The layout manager for the parent container.

The default icon used for a component that doesn’t define its own icon.

Designer type. Can be UI, Menu, Data Access, Default, or custom.



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-7

U s i n g  t h e  I n s p e c t o r

The Inspector’s left column shows the names of the component properties 
or events. The right column shows their current values.

Using the Inspector, you can

• Change properties’ exposure levels.

• Change property values.

• Set the initial property values for components in the container, and for 
the container and its layout manager.

• Create event handling code. This creates code to catch events in a 
container that receives events from a component inside the container.

• Localize strings.

Any changes you make in the Inspector are reflected immediately in the 
source code and in the rest of the designer.

See also

• Chapter 4, “Handling events”

• “Using customizers in the designer” on page 7-9 to learn how 
customizers work with the Inspector.

• Chapter 9, “Tutorial: Building a Java text editor” for practice using the 
Inspector.

Surfacing property values

In order to be surfaced in the Inspector, a property value must

• Be a class-level variable.

• Have a Hidden or Expert exposure level.

Making properties class variables
Properties that are static variables are editable in the Inspector. To make 
an instance variable a class-level variable using the Inspector,

1 Right-click the property in the Inspector.

2 Choose Expose As Class Level Variable from the context menu.

The pertinent value appears in the Inspector. JBuilder writes a new 
variable declaration and applies the value to it. This way you can 
manipulate the value outside the context of the property.

Setting property exposure
You can choose what level of properties are exposed for the component in 
the Inspector based on how the properties are marked in the component’s 



3-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  I n s p e c t o r

BeanInfo class. Right-click in the Inspector and choose Property Exposure 
Level to display a context menu with three choices:

Note In order to be seen, properties must either be exposed in the BeanInfo class 
or else set in the jbInit() method for the class.

Setting property values

Properties are attributes that define how a component appears and 
responds at runtime. In JBuilder, you set a component’s initial properties 
during design time, and your code can change those properties at 
runtime.

The Properties page in the Inspector displays the properties of the selected 
components. This is where you set the property values at design time for 
any component in your design. By setting properties at design time, you 
are defining the initial state of a component when the UI is instantiated at 
runtime.

Note To modify property values at runtime, you can put code in the body of the 
methods or in event handlers, which you can create on the Events page of 
the Inspector.

To set a component’s properties at design time,

1 Select a component. 

Any component can be selected in the component tree. Visible 
components can be selected on the design surface as well.

2 Click the Properties tab of the Inspector.

3 Select the property you want to change, using the mouse or arrow keys. 
You may need to scroll down until the property you want is visible.

4 Enter the value in the right column in one of the following ways:

• When there is a text field, type in the value for that property.

Regular The Inspector displays only the properties marked Regular, 
not those marked Hidden or Expert.

Expert The Inspector displays the properties marked Regular and 
Expert.

Hidden The Inspector displays all properties, Regular, Expert, and 
Hidden.



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-9

U s i n g  t h e  I n s p e c t o r

• When the value field has a drop-down list, click the arrow beside the 
property and choose a value from the list. 

Either use the mouse or the Up and Down arrow keys on the keyboard 
to move through the list. Click or press Enter on the desired value.

• When the value field has an ellipsis (...) button, click the button to 
display a property editor, such as a color or font selector. Set the 
values in the property editor, then click OK or press Enter.

Setting shared properties
When more than one component is selected, the Inspector displays only 
the properties that

• The components have in common.

• Can be edited.

When you change any of the shared properties in the Inspector, the 
property value changes to the new value in all the selected components.

Note When the original value for the shared property differs among the 
selected components, the property value displayed in the Inspector is 
either the default or the value of the first component in the selection list.

To set properties for multiple components,

1 Select the multiple components that will have shared properties.

2 Select and edit the desired property in the Inspector.

Setting a property when the drop-down list is empty
Sometimes the Inspector can’t provide values for a property. To generate 
values,

1 Right-click the property in the Inspector.

2 Add objects of an appropriate type to the current class. 

This populates the property value list. Use initialized objects for 
preference. Normally, you can use the designer to add appropriate 
component objects.

3 Now you can select these objects as values from the property value list.

See also

• Example in “Understanding property values”.

• “Setting property exposure” below.



3-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  t h e  I n s p e c t o r

Understanding the Inspector
JBuilder’s Inspector relies on information that’s either contained in the 
BeanInfo class for the bean or derived from introspection of the bean itself. 
When no property editor is specified for a property in the bean’s BeanInfo 
class, or if the bean does not have a BeanInfo class, the Inspector uses a 
default editor based on the property value’s data type. For instance, if a 
property takes a String, the editor for that property lets you type in a 
string.

The list of property editors by type is stored in propertyEditors.properties 
in the <.jbuilder> folder. If no default editor is registered for a particular 
data type, JBuilder builds a drop-down list containing all objects of the 
correct data type that are in scope. If there are no objects of the correct data 
type in scope, then the drop-down list is empty. You can create objects of 
the correct data type in scope and they will appear in the list.

Example
For example, a JTable has a model property that takes objects of type 
TableModel. If you add a JTable to your design in the UI designer, then click 
the drop-down arrow on its model property in the Inspector, the 
drop-down list value is <none>.

Note One of the values the Inspector searches for is the property’s exposure 
level. To make the model property visible in the Inspector, right-click in the 
Inspector and choose Property Exposure Level|Hidden.

To populate the model property drop-down list in the Inspector, add 
objects of type TableModel to your class. For instance, you can add a 
TableModel class from the javax.swing.table package from the component 
palette:

1 Click the Bean Chooser button on the component palette.

2 Choose Select.

3 Expand the package javax.swing.table.

4 Select TableModel.

5 Click OK.



U s i n g  t h e  c o m p o n e n t  t r e e  a n d I n s p e c t o r 3-11

U s i n g  t h e  I n s p e c t o r

6 Click anywhere in the component tree. 

This creates tableModel1. 

Now the model property drop-down list for JTable in the Inspector is 
populated with tableModel1.

Note In some cases, you may need to add the object to your class manually.



3-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



H a n d l i n g  e v e n t s 4-1

C h a p t e r

4
Chapter4Handling events

This chapter describes how to add, edit, and delete event handlers for 
components using the Inspector. It also gives specific examples of how to 
code commonly used event handlers for the JBuilder dialog box 
components.

Event-handling code is executed when the user interacts with the UI, as 
when clicking a button or choosing a menu item. Every component can be 
interacted with by the user. The component issues a message when a user 
interaction with that component occurs. In order to react to that 
interaction, the program must listen for the component’s message and 
respond appropriately. The program needs a listener to listen for the 
component message, and an event handler to respond.

The Inspector’s Events page lists all supported events for the selected 
component. Each event has a default action, out of several possible 
actions. When you double-click an event in the Inspector, JBuilder writes a 
listener and a stub (empty) event-handling method for the event’s default 
action, and switches to the Source view with your cursor in the stub 
event-handler. Manually fill in the code describing what the program 
should do in response to that event.

There are some visual components, such as dialog boxes, that normally 
appear only when event-handling code is executed. (These components 
appear in the Default designer.) For example, a dialog box isn’t part of the 
UI surface, but it’s a separate UI element which appears transiently as a 
result of a user operation such as a menu choice or a button press. 
Therefore, some of the code associated with using the dialog, such as a call 
to its show() method, has to be placed into the event-handling method. 
This code is completely custom.



4-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

A t t a c h i n g  e v e n t - h a n d l i n g  c o d e

See also

• “Using the Inspector” on page 3-6

• “Requirements for a class to be visually designable” on page 1-6

Attaching event-handling code
Using the Events page of the Inspector, you can attach event handlers to 
component events and delete existing handlers.

To attach event-handling code to a component event,

1 Select the component in the component tree or on the design surface.

2 Select the Events tab in the Inspector to display the events for that 
component.

3 Select an event. Use the mouse button or the arrow keys.

4 Double-click the event’s name or press Enter.

JBuilder creates an event handler with an editable default name and 
switches to that event handler in the source code. 

JBuilder also inserts code into your class, called an Adapter, to connect 
the event and the event-handling method.

5 Write the code inside the body of the event handler that specifies how 
you want the program to respond to that component event.

Note To find out what methods and events a component supports, view the 
documentation for that class. To do so, double-click that component in the 
component tree to load the class into the AppBrowser, then select the Doc 
tab.

See also

• “Connecting controls and events” on page 4-3

Creating a default event handler

To quickly create an event handler for a component’s default event,

1 Select a component on the component palette and add it to your UI.

2 Double-click the component in the designer. 

An event stub is created and focus switches to that event handler in the 
source code.

3 Add the necessary code to the event handler to complete it.



H a n d l i n g  e v e n t s 4-3

C o n n e c t i n g  c o n t r o l s  a n d  e v e n t s

Note The default event is defined by BeanInfo, or as actionPerformed if none was 
specified.

Deleting event handlers

To delete an existing event handler,

1 Select the component in the component tree or on the design surface.

2 Select the Events tab in the Inspector.

3 Click the event you want to delete.

4 Highlight the entire name of the event handler in the event’s value 
field.

5 Press Delete.

6 Press Enter to remove the event handler name.

JBuilder deletes the hook to the associated event-handling method. If the 
handler is otherwise empty, JBuilder also deletes the adapter class from 
the source code. Delete the method itself manually.

Connecting controls and events
Event adapters connect event handlers to their controls. You can use 
either standard event adapters or anonymous inner class adapters to 
accomplish this.

Standard adapters create a named class. The advantage to that is that the 
adapter is reusable, and can be referred to later and from elsewhere in the 
code. Anonymous adapters create inline code. The advantage to that is 
that the code is leaner and more elegant. However, it’s single-use only.

When you use an anonymous adapter, the only code JBuilder creates is 
the listener and the event-handling stub. When you use a standard event 
adapter, JBuilder generates three pieces of code:

• The event-handling stub.

• An EventAdapter.

• An EventListener.

JBuilder creates an EventAdapter class for each specific component/event 
connection and gives it a name which corresponds to that particular 
component and event. This code is added in a new class declaration at the 
bottom of your file.



4-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t a n d a r d  e v e n t  a d a p t e r s

For example, in the TextEdit application, JBuilder generates a type of event 
adapter called an ActionAdapter with the following code:

// Creates the listener side of the connection:
class TextEditFrame_jMenuFileExit_ActionAdapter implements ActionListener { 
  TextEditFrame adaptee;

// Connects the adapter to the class:
  TextEditFrame_jMenuFileExit_ActionAdapter(TextEditFrame adaptee) { 
    this.adaptee = adaptee;
  }

// Provides the necessary ActionPerformed:
  public void actionPerformed(ActionEvent e) {
    adaptee.jMenuFileExit_actionPerformed(e);
  }
}

JBuilder also creates a line of code in the jbInit() method. This line of code 
connects the component’s event source, through the EventAdapter, to your 
event-handling method. It does so by adding a listener. The listener 
method takes a parameter of the matching EventAdapter.

In the above example, the EventAdapter is constructed in place. Its 
constructor parameter is the this reference to Frame that contains the 
event-handling method. For example, here is the line of code that 
performs this task in the HelloWorld application:

jButton1.addActionListener(new Frame1_jButton1_actionAdapter(this));

The adapter class name is arbitrary. All that matters is that the reference 
matches.

JBuilder creates the adapter class with the implementation for the method 
in the ActionListener interface. The method that handles the selected event 
calls another method in the adaptee (Frame1) to perform the desired action.

Standard event adapters
JBuilder generates an event adapter class that implements the appropriate 
interface. It then instantiates the class in the UI file and registers it as a 
listener for the component. For example, for a jButton1 event, it calls 
jButton1.addActionListener(). All this code is visible in the source code. All 
that’s left for you to do is to fill in the event-handling method that the 
action adapter calls when the event occurs.



H a n d l i n g  e v e n t s 4-5

S t a n d a r d  e v e n t  a d a p t e r s

For example, here is code that is generated for a focusGained() event:

jButton1.addFocusListener(new Frame1_jButton1_focusAdapter(this));

void jButton1_focusGained(FocusEvent e) {
  // code to respond to event goes here
}

class Frame1_jButton1_focusAdapter extends java.awt.event.FocusAdapter {
  Frame1 adaptee;

  Frame1_jButton1_focusAdapter(Frame1 adaptee) {
    this.adaptee = adaptee;
  }

  public void focusGained(FocusEvent e) {
    adaptee.jButton1_focusGained(e);
  }
}

The advantage to this adapter is that it can be reused, because it is named. 
The disadvantage is that it has only public and package access, which can 
impose limits on its usefulness.

Anonymous inner class adapters

JBuilder can also generate inner class event adapters. Inner classes have 
the following advantages:

• The code is generated inline, thereby simplifying the appearance of the 
code.

• The inner class has access to all variables in scope where it is declared, 
unlike the standard event adapters that have only public and package 
access.

The particular type of inner class event adapters that JBuilder generates are 
known as anonymous adapters. This style of adapter creates a nameless adapter 
class. The advantage is that the resulting code is compact and elegant. The 
disadvantage is that this adapter can only be used for this one event, because 
it has no name and therefore cannot be called from elsewhere.

For example, the following is code generated for a focusGained() event 
using an anonymous adapter:

jButton1.addFocusListener(new java.awt.event.FocusAdapter() {
  public void focusGained(FocusEvent e) {
   jButton1_focusGained(e);
  }
 }
  void jButton1_focusGained(FocusEvent e) {

}



4-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

E x a m p l e s :  c o n n e c t i n g  a n d  h a n d l i n g  e v e n t s

Compare this code with the standard adapter code sample shown above. 
JBuilder generated that code using a standard adapter class. Both ways of 
using adapters provide the code to handle focusGained() events, but the 
anonymous adapter approach is more compact.

Choosing event handler style

When you create an event using the Events tab in the Inspector, JBuilder 
generates event adapter code in your container class to handle event 
listening. JBuilder lets you choose which style of event handling code is 
automatically generated. The two styles of event adapters are:

• Standard adapters

• Anonymous inner class adapters

To specify the style of event adapters JBuilder generates,

1 Choose Project|Project Properties.

2 Select the Formatting page.

3 Select the Generated tab inside the Formatting page.

4 Under Event Handling options, choose either Standard Adapter or 
Anonymous Adapter. 

If you want the generated code to match existing event handlers, check 
the Match Existing Code option.

5 Click OK.

To choose a default event adapter style for all new projects,

1 Choose Project|Default Project Properties.

2 Select the Formatting page.

3 Select the Generated tab inside the Formatting page.

4 Under Event Handling options, choose either Standard Adapter or 
Anonymous Adapter. 

If you want the generated event handling code to match existing event 
handlers, check the Match Existing Code option.

5 Click OK.

Examples: connecting and handling events
These are specific examples of frequently used event handlers:

• Displaying text when a button is pressed

• Invoking a dialog box from a menu item



H a n d l i n g  e v e n t s 4-7

E x a m p l e s :  c o n n e c t i n g  a n d  h a n d l i n g  e v e n t s

Displaying text when a button is pressed

Here is a simple example of connecting code that displays “Hello World!” 
in response to a button event:

1 Run the Application wizard to start a new application. Select File|New, 
choose the General tab of the object gallery, and double-click on 
Application.

2 Accept all the defaults and press Finish.

Frame1.java opens in the editor.

3 Click the Design tab at the bottom of Frame1.java to display the UI 
designer.

4 Select the JTextField and JButton components on the Swing tab of the 
component palette.

5 Drop them in the component tree or on the design surface.

6 Select jButton1 to display it in the Inspector.

7 Select the Events page in the Inspector.

8 Double-click the actionPerformed event. 

You will be taken to the newly-generated stub in the source code of the 
event-handling method.

9 Enter the following code inside the braces of the event-handling 
method:

   jTextField1.setText("Hello World!");

10 Run the application to try it out. 

Click the Run button on the toolbar, or press F9.

When your application appears, click the button to see the text “Hello 
World!” appear in the text field. In this example, the JFrame component 
listens for the actionPerformed event on the button. When that event occurs, 
the JFrame sets the text in the JTextField.

Invoking a dialog box from a menu item

When you design your own programs, you will typically need to fill in the 
event-handling stubs. For example, you might want to extract the file 
name the user entered from a JFileChooser dialog box and use it to open or 
manipulate a file.

The following example shows you how to invoke a JFileChooser dialog box 
from a File|Open menu item:

1 Run the Application wizard in a new or existing project.



4-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

E x a m p l e s :  c o n n e c t i n g  a n d  h a n d l i n g  e v e n t s

2 Press next on Step 1 to accept the defaults from this step.

3 Check Generate Menu Bar on step 2, then press Finish to accept the rest 
of the defaults.

4 Select the Frame file (Frame1.java) in the project pane and click the Design 
tab at the bottom of the AppBrowser to open the visual design tools.

5 Select the JFileChooser component on the Swing Containers tab of the 
palette, and click the UI folder in the component tree. A component 
called jFileChooser1 is added to the UI section of the tree.

Note If you drop this component anywhere else in the tree or the designer, it 
becomes a sub-component of this rather than of the UI as a whole. It 
consequently becomes the UI for your Frame1.java file.

6 Create an Open menu item on the File menu as follows: (The example 
code below was generated with Open as jMenuItem1.)

a Select MenuBar1 in the component tree and press Enter to open the 
Menu designer.

b Place the cursor on the File|Exit menu item in the designer and press 
the Insert Item button on the Menu designer toolbar. A new empty 
menu item is added.

c Enter Open as a new menu item.

7 Select the Open menu item in the designer or on the component tree, 
then click the Events tab in the Inspector.

8 Double-click the actionPerformed event in the Inspector to generate the 
following event-handling method stub in the source code:

void jMenuItem1_actionPerformed(ActionEvent e) {
}

JBuilder takes you to this event-handling method in the source code.

9 Inside the braces of the actionPerformed event-handling method, type 
the following:

jFileChooser1.showOpenDialog(this);

10 Save your files.

Now, run your program and use its File|Open menu commands.

See also

• Chapter 9, “Tutorial: Building a Java text editor”



C r e a t i n g  u s e r  i n t e r f a c e s 5-1

C h a p t e r

5
Chapter5Creating user interfaces

Creating a good user interface requires more than good programming. 
The important concerns of usability and the principles of good design are 
well-addressed in the many excellent books available on the subject. This 
chapter focuses on using JBuilder’s tools to facilitate the process of 
implementing a user interface design. This involves certain tasks:

• Creating a project that contains a main UI container, such as a Frame, 
Panel, or Dialog.

• Adding components to the UI container, such as additional containers, 
UI controls, and database components.

• Setting component properties.

• Attaching code to component events.

• Setting container layouts and component constraints.

JBuilder assists by providing wizards to create the basic framework of files 
for your project and visual design tools to speed up the UI design process.

See also

• “The Application wizard” in the online help.

• “Adding components” on page 3-3

• “Setting property values” on page 3-8

• “Attaching event-handling code” on page 4-2

• Chapter 8, “Using layout managers”



5-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S e l e c t i n g  c o m p o n e n t s  i n  t h e  U I

Selecting components in the UI
Before selecting existing components, be sure the Selection Arrow button 
on the component palette appears depressed. Otherwise you may 
accidentally place a new component on your design.

To select multiple components on the design surface, do one of the 
following:

• Hold down the Ctrl key and click the components on the design surface 
one at a time.

• Hold down the Shift key and drag around the outside of the components 
on the design surface, surrounding the components with a rectangle.

When this rectangle encloses all the components you want to select, 
release the mouse button. If necessary, you can then use Ctrl+click to 
individually add or remove components from the selected group.

See also

• “Adding components” on page 3-3 for more on how to add single and 
multiple components.

• “Action shortcuts” on page 2-9

Adding to nested containers

Building even a moderately complex UI often involves nesting containers 
within other containers. For example, you might want to add a panel to a 
BorderLayout container that already contains two other panels. You need a 
way to indicate to the designer which container should actually receive 
the selected component.

To do this,

1 Select the container to which you want to add the component. 

Either select it in the component tree or select it in the designer, using 
the status bar to check that you’re choosing the correct container.

2 Select the component on the palette that you want to add.

3 Drop the component into the parent container on the design surface, 
continuing to hold the mouse button down.



C r e a t i n g  u s e r  i n t e r f a c e s 5-3

M o v i n g  a n d  r e s i z i n g  c o m p o n e n t s

4 Press the Alt key, and while holding it down, release the mouse button.

Another way to add a component to a container easily in a nested layout is 
to drop it on the target container in the structure pane’s component tree.

Once the component is in the new container, you can modify its 
constraints to specify its exact placement.

Moving and resizing components
For many layouts, the layout manager completely determines the size of 
the components by constraints, so you can’t size the components yourself. 
However, when the layout property is set to null or XYLayout in the 
Inspector, you can either size components when you first place them in 
your UI or resize and move them later.

To size a component as you add it,

1 Select the component on the component palette.

2 Place the cursor where you want the component to appear in the 
design.

3 Drag the mouse pointer before releasing the mouse button. 

As you drag, an outline appears to indicate the size and position of the 
control.

4 Release the mouse button when the outline is the size you want.

To resize a component, either edit its constraints in the Inspector or use 
the mouse:

1 Click the component on the design surface or in the component tree to 
select it. 

When a component is selected, small squares, called nibs or sizing 
handles, appear on the perimeter of the component. For some 
containers, an additional nib called a move handle appears in the middle 
of the component.

2 Click an outer handle and drag to resize.



5-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M a n a g i n g  t h e  d e s i g n

To move a component using the mouse,

1 Click the component on the design surface or in the component tree to 
select it.

2 Do one of the following on the design surface:

• Click anywhere inside the component, and drag it any direction. If 
the component is a container completely covered with other 
components, use the center move handle to drag it.

• Hold down the Ctrl key, and use one of the arrow keys to move the 
component one pixel in the direction of the arrow.

• Hold down the Shift+Ctrl keys, and use one of the arrow keys to move 
the component eight pixels in the direction of the arrow.

To move a component without using the mouse,

1 Select the component in the component tree.

2 Cut the component. Either choose Edit|Cut or use the keyboard 
shortcut for your editor emulation.

3 Select the parent container in the component tree.

4 Paste the component. Either choose Edit|Paste or use your keyboard 
shortcut.

Important If you don’t use the mouse at all, be sure to add the components in the 
sequence which the final design will require them to appear in. If a 
component is added out of intended sequence, you must delete the 
subsequent components that are at or below its hierarchical level and 
rework the design from the corrected component onwards.

See also

• “Cutting, copying, and pasting components” on page 3-4 to learn how 
to move and size components without using the mouse.

Managing the design
You have a project populated with visually designable components which 
have properties and events attached to them. Before the UI gets unwieldy, 
you want to group your components to make the UI as clean-looking and 
usable as possible. You’ll need to make sure the application provides 
enough usefulness to the user. Once the UI is fully populated and its 
appearance and behavior are under control, you want to tune the look and 
feel and test the UI to make sure it looks and behaves as intended.

The rest of this chapter deals with these more advanced topics.



C r e a t i n g  u s e r  i n t e r f a c e s 5-5

M a n a g i n g  t h e  d e s i g n

Grouping components

Some components on the palette are containers that can be used to group 
components together so they behave as a single component at design time.

For example, you might group a row of buttons in a Panel to create a 
toolbar. Or you could use a container component to create a customized 
backdrop, status bar, or check box group.

When you place components within containers, you create a relationship 
between the container and the components it contains. All design-time 
operations you perform on the containers, such as moving, copying, or 
deleting, also affect any components grouped within them.

To group components by placing them into a container,

1 Add a container to the UI. If you are working in null or XYLayout, you 
can drag to size it.

2 Add each component to the container, making sure the mouse pointer 
falls within the container’s boundaries. (The status bar at the bottom of 
the AppBrowser displays which container your mouse is over.) You 
can drop a new component from the component palette, or drag an 
existing component into the new container. As you add components, 
they appear inside the selected container on the design surface and 
under that container in the component tree.

Tip If you want the components to stay where you put them, change the 
container’s layout to null or XYLayout before adding any components. 
Otherwise, the size and position of the components will change according 
to the layout manager used by the container. You can change to a final 
layout after you finish adding the components.

Adding application-building components

Components that do not descend from java.awt.Component, such as menus, 
dialog boxes and database components, are treated differently from UI 
components during class design. They are represented on the component 
palette, but when you add them to your class, they are visible only in the 
component tree. They also use different designers. You can select them in 
the component tree to change their properties in the Inspector or 
double-click them to open the associated designer.



5-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M a n a g i n g  t h e  d e s i g n

Menus
To add menus to your UI,

1 Click one of the following menu bar or context menu components on 
the component palette:

1 Drop it anywhere on the component tree or on the design surface. 
Notice that it is placed in the component tree’s Menu folder.

2 Double-click the menu component in the component tree to open the 
Menu designer, or right-click it and choose Activate Designer.

3 Add menu items in the Menu designer.

4 Attach events to the menu items by using the Inspector or manually 
typing the code.

5 Close the Menu designer by double-clicking a UI component in the 
component tree.

See also

• Chapter 6, “Designing menus”

Dialog boxes
The Dialog wizard is a
feature of JBuilder SE

and Enterprise.

There are two ways to add dialog boxes to your project automatically:

• Use an existing one from the component palette.

• Create a custom one using the Dialog wizard in the object gallery (File|
New).

To add an existing dialog,

1 Select one of the dialog components, such as JFileChooser, on the 
component palette. You’ll find them on the Swing Containers tab and 
on the More dbSwing tab in the SE and Enterprise editions.

2 Drop it on the UI folder in the component tree.

Note Depending on the type of dialog, it is placed in either the UI folder or 
Default folder of the component tree.

3 Attach events to the associated menu item that will surface the dialog at 
runtime. Use the Events tab in the Inspector or create the source code 
manually.

Swing containers tab JMenuBar
JPopUpMenu

AWT tab MenuBar
PopUpMenu



C r e a t i n g  u s e r  i n t e r f a c e s 5-7

M a n a g i n g  t h e  d e s i g n

Tip If you’re using dbSwing components, select them in the component tree 
and change the frame property to this so they’re visible at runtime.

To create a custom dialog with the Dialog wizard,

1 Choose File|New and double-click the Dialog wizard icon in the object 
gallery.

2 Name your dialog class and choose the base class from which you want 
the class to inherit.

3 Click OK to close the dialog box. 

A shell dialog class is created in your project with a Panel added so it is 
ready to design in the designer.

4 Complete any UI design desired, then attach events to the menu items 
that will surface the dialog at runtime.

For information on how to hook up menu events to dialog boxes, see 
Chapter 4, “Handling events.”

Once the dialog box has been created and its UI designed, you will want 
to test or use your dialog box from some UI in your program.

To use a dialog that is not a bean,

1 Instantiate your dialog class from someplace in your code where you 
have access to a Frame which can serve as the parent Frame parameter in 
the dialog constructor. A typical example of this would be a Frame 
whose UI you are designing, that contains a button or a menu item 
which is intended to bring up the dialog. In applets, you can get the 
Frame by calling getParent() on the applet.

For a modeless dialog box (which we are calling dialog1 in this 
example), you can use the form of the constructor that takes a single 
parameter (the parent Frame) as follows:

Dialog1 dialog1=new Dialog1(this);

For a modal dialog box, you will need to use a form of the constructor 
that has the boolean modal parameter set to true, such as in the following 
example:

Dialog1 dialog1=new Dialog1(this, true);

You can either place this line as an instance variable at the top of the 
class (in which case the dialog box will be instantiated during the 
construction of your Frame and be reusable), or you can place this line of 
code in the actionPerformed() event handler for the button that invokes 
the dialog box (in which case a new instance of the dialog will be 
instantiated each time the button is pressed.) Either way, this line 
instantiates the dialog, but does not make it visible yet.



5-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M a n a g i n g  t h e  d e s i g n

In the case where the dialog box is a bean, you must set its frame 
property to the parent frame before calling show(), rather than 
supplying the frame to the constructor.

2 Before making the instantiated dialog box visible, you should set up 
any default values that the dialog fields should display. If you are 
planning to make your dialog box into a Bean (see below), you need to 
make these dialog box fields accessible as properties. You do this by 
defining getter and setter methods in your dialog class.

3 Next, you have to cause the dialog box to become visible during the 
actionPerformed() event by entering a line of code inside the event 
handler that looks like this:

dialog1.show();

4 When the user presses the OK button (or the Apply button on a 
modeless dialog box), the code that is using the dialog box will need to 
call the dialog’s property getters to read the user-entered information 
out of the dialog, then do something with that information.

• For a modal dialog box, you can do this right after the show() method 
call, because show() doesn’t return until the modal dialog is 
dismissed.

• For a modeless dialog, show() returns immediately. Because of this, 
the dialog class itself will need to expose events for each of the 
button presses. When using the dialog box, you will need to register 
listeners to the dialog’s events, and place code in the event handling 
methods to use property getters to get the information out of the 
dialog box.

See also

• Chapter 9, “Tutorial: Building a Java text editor,” to see examples of 
using modal dialog box components.

Database components
This is a feature of

JBuilder Enterprise.
Database components are JavaBean components that control data and are 
often attached to data-aware UI components. They often don’t show in the 
UI themselves. They’re located on the DataExpress page of the component 
palette.

To add a database component to your class using your mouse,

1 Select the DataExpress tab of the component palette and click the 
desired component.

2 Drop it on the component tree or on the design surface. 

Although the component is not visible in the UI designer, it appears in 
the Data Access designer’s folder in the component tree.



C r e a t i n g  u s e r  i n t e r f a c e s 5-9

C h a n g i n g  l o o k  a n d  f e e l

3 Modify any properties and add event handlers as with other 
components.

To add a database component using menus,

1 Choose Edit|Add Component. 

The Add Component dialog appears.

2 Select a component from the DataExpress library.

3 Click OK or press Enter.

To use the column designer,

1 Using either technique above, add a component with columns, such as 
a TableDataSet or a QueryDataSet.

2 Click the expand icon beside it in the component tree to expand the 
component.

3 Double-click the <newcolumn> node to open the column designer. 

Use the column designer to adjust the appearance and behavior of the 
column.

4 Close the column designer by double-clicking any non-database 
component in the component tree.

See also

• “Understanding JBuilder database applications” in the Database 
Application Developer’s Guide for complete information about using 
Database components.

Changing look and feel
In multi-platform development, a design must appear and behave 
predictably on each platform the program is expected to support. Most 
developers work primarily on one platform. It’s hard to predict how a UI 
will look and feel on platforms you’re not extremely familiar with.

JBuilder provides several straightforward ways of changing the look and 
feel both at run time and at design time.

Runtime look and feel
JBuilder includes the Java Foundation Classes (Swing) graphical user 
interface (GUI) components. Swing architecture gives you the capability 
of specifying a look and feel for a program’s user interface. You can take 
advantage of this Java feature to create applications that will have the look 
and feel of a user’s native desktop. You can also ensure a uniform look 



5-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

C h a n g i n g  l o o k  a n d  f e e l

and feel in your applications across platforms with the Java Metal Look & 
Feel.

There are several choices of look and feel available to you in JBuilder:

• Metal

• CDE/Motif

• Windows (supported only on Windows platforms)

• MacOS Adaptive (supported only on Macintosh platforms)

When you create an application or an applet using the JBuilder wizards, 
the following code is automatically generated in the class, 
Application1.java or Applet1.java for example, that runs your program.

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

For example,

Application:

 //Main method
  public static void main(String[] args) {
    try {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) {
    }
    new Application1();
  }

Applet (when base class is javax.swing.JApplet):

//static initializer for setting look and feel
  static {
    try {
      //UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
      
//UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
    }
    catch(Exception e) {
    }
  }
}

JBuilder uses the following method to set the program’s look and feel:

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

This method automatically detects which platform is running your 
program and uses that look and feel for your program.

Note that the line of code for the look and feel statement is inside the 
try/catch block. The setLookAndFeel() method throws a number of 
exceptions that need to be explicitly caught and handled.



C r e a t i n g  u s e r  i n t e r f a c e s 5-11

C h a n g i n g  l o o k  a n d  f e e l

You can change the runtime look and feel to Metal or Motif by changing 
the code in the 
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName()); 
method to one of the following:

// Metal look and feel:
UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

// Motif look and feel:
UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

Important If you know you want your runtime look and feel to be Motif, then be sure 
to use Motif in the designer so you can see the end results. Motif puts 
more space around some components, such as buttons.

Design time look and feel
The runtime look and feel is determined by the source code setting. The 
look and feel selected in JBuilder’s designer is for preview purposes and 
has no effect on the source code. You can change the look and feel in the 
designer at any time to preview how the design looks in a particular look 
and feel, and later change the code to set that look and feel if you like it.

There are two ways to change the design time look and feel:

• Right-click on the design surface and choose Look And Feel. Select an 
alternate look and feel from this submenu. 

This only changes the look and feel in the designer and only for the 
current project. Using this method, you can design in one look and 
preview it in the runtime look, all from within the designer.

• Choose Tools|IDE Options. Select an alternate look and feel from the 
Look And Feel drop-down list on the Browser page. 

This changes the look and feel for the JBuilder environment, but you 
can still use the first method to switch the look in the designer.

The design surface repaints to display the selected look and feel. It does 
not change your code.

Important Changing the look and feel in the designer does not change your code. 
This is only a preview in the designer and does not affect the look and feel 
at runtime.

Testing the UI at runtime

When you’re ready to test your program, you can simply run it, or you 
can run it and debug it at the same time.

To run your application, choose Run|Run Project, press F9, or click the 
Run button on the toolbar. JBuilder compiles the program, and if there are 
errors, compiling stops so you can fix the errors and try again.



5-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

C h a n g i n g  l o o k  a n d  f e e l

To debug your application, choose Run|Debug, press Shift+F9, or click the 
Debug button. Debug your program and correct any errors.

For complete information on these topics see the following chapters in 
Building Applications with JBuilder.

See also

• “Running Java programs” in Building Applications with JBuilder

• “Building Java programs” in Building Applications with JBuilder

• “Compiling Java programs” in Building Applications with JBuilder

• “Debugging Java programs” in Building Applications with JBuilder

• “Deploying Java programs” in Building Applications with JBuilder



D e s i g n i n g  m e n u s 6-1

C h a p t e r

6
Chapter6Designing menus

This chapter shows you how to visually design menus. Using the JBuilder 
Menu designer, you can visually design both menu bar menus and 
pop-up menus.

Opening the Menu designer
To open the Menu designer, first select the AppBrowser’s Design tab to 
open the UI designer. Once the designer is open,

1 Expand the Menu folder in the component tree.

2 Double-click any menu component in the component tree.

The design surface changes to show the Menu designer features.

If there are no components in the Menu folder, you must first bring a 
menu component into the design.

1 Use either the Add Component dialog or the component palette to add 
one of the following menu bar or pop-up menu components:

• From the Swing Containers palette: 
JMenuBar
JPopUpMenu

• From the AWT palette: 
MenuBar
PopUpMenu

2 Drop the component onto the component tree or into the design 
surface.

It is automatically placed in the component tree’s Menu folder.



6-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M e n u  t e r m i n o l o g y

Toggle between the Menu designer and any other designer type in one of 
three ways:

• Double-click a component of the desired designer type in the 
component tree.

• Select a component of the desired designer type in the component tree 
and press Enter.

• Right-click a component of the desired designer type in the component 
tree and choose Activate Designer.

As you edit menu items in the Menu designer, all changes are 
immediately reflected in the Inspector, the component tree, and the source 
code. Likewise, when you make changes in the source code, the changes 
are reflected in the IDE.

There is no need to save your menu design explicitly. Code is generated as 
you work in the Menu designer and is saved when you save your .java 
source file. The next time you open the .java file and click a MenuBar 
component in the component tree, the Menu designer will open and 
reload everything for that component.

Menu terminology
The basic parts of a menu are referred to using the following terms:

• A menu is a list of choices, or menu items, which the user interacts with 
at runtime.

• A menu item is one choice on a menu. Menu items can have attributes 
such as being disabled (gray) when not available to the user, or 
checkable so their selection state can be toggled.

• The menu bar is located at the top of a frame and is composed of menus 
containing individual menu items.

• A submenu is a nested menu accessed by clicking on an arrow to the 
right of a menu item.

• A keyboard shortcut is displayed to the right of the menu item, and may 
be specific to a particular editor interface. For example, Ctrl+X is used to 
indicate Edit|Cut in many editors.

• The separator is a line across the menu which visually separates 
different groups of menu items.



D e s i g n i n g  m e n u s 6-3

M e n u  d e s i g n  t o o l s

Menu design tools
When you open the Menu designer on a menu item, the design surface 
changes to look something like this:

This Menu designer has its own toolbar and recognizes keystrokes such as 
the navigation arrows and Ins and Del keys.

The Menu designer toolbar contains the following tools:

Note Right-click a menu item in the Menu designer to display a pop-up menu 
containing many of the same commands.

Tool Action

Inserts a placeholder for a new menu to the left of the selected 
menu or a new menu item above the selected menu item.

Inserts a separator immediately above the currently selected 
menu item.

Creates a placeholder for a nested submenu and adds an arrow to 
the right of the selected menu item.

Deletes the selected menu item (and all its submenu items, if 
any).

Toggles the enabled property of the selected menu item between 
true and false and dims it when it is false (disabled). (Applies to 
Swing menu components; the enabled property of AWT menu 
components must be changed by hand in your source code, since 
it’s not available to the Inspector.)

Makes the menu item checkable.

Toggles the menu item between being a JMenuItem or a 
JRadioButtonMenuItem.



6-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

C r e a t i n g  m e n u s

Creating menus
A menu must be attached to a Frame or a JFrame container. To create a menu 
in your application, first create a frame component file. Do this in one of 
the following ways:

• Create a new application with the Application wizard. On Step 2 of the 
wizard, check Generate Menu Bar.

• Open an existing frame component’s file.

• Use the Frame wizard to add a Frame file to your project.

To add a menu component to the UI,

1 Select the Frame or JFrame file in the project pane.

2 Click the Design tab at the bottom of the AppBrowser.

3 Select your main UI frame on the design surface or in the component 
tree.

4 Click the menu component you want from either the AWT page or the 
Swing Containers page of the component palette.

5 Drop it anywhere on the design surface or in the component tree.

• A MenuBar or JMenuBar is attached to the main UI Frame, and appears at 
the top of the application at runtime.

• A PopupMenu or JPopupMenu appears when the user right-clicks in your 
UI. Pop-up menus do not have menu bars.

The menu component you added shows up as a node in the component 
tree, and its properties are displayed in the Inspector.

For every menu you want to include in your application, add a menu 
component to the target UI container. The first MenuBar component 
dropped onto the UI container is considered the current MenuBar for your 
UI. However, you can create more than one MenuBar for an application. 
Each MenuBar’s name is displayed in the Inspector in the frame’s MenuBar 
property. To change the current MenuBar, select a menu from the MenuBar 
property drop-down list.

Note At design time, menu components are visible only in the Menu designer 
(not in the UI designer). However, you can always see them and select 
them in the component tree. To see how the menu looks in your UI, you 
must run your application.



D e s i g n i n g  m e n u s 6-5

C r e a t i n g  m e n u s

Adding menu items

When you first open the Menu designer, it displays the first blank menu 
item, indicated by a dotted rectangle.

1 Type a label for the menu item. (You may have to double-click inside 
the rectangle to get a cursor.) 

The field is a default width if that menu list is empty. When it’s not 
empty, the field is as wide as the longest menu item in the menu. While 
you’re typing, the text field will scroll to accommodate labels longer 
than the edit field.

2 Press Enter, or press the down arrow key to add another menu item. 

A placeholder for the next menu or menu item is automatically added. 
The name of the menu item in the component tree changes to reflect the 
label.

3 Type a label for each new item you want to create in the list, or press 
Esc to return to the menu bar.

You can use the arrow keys to move from the menu bar into a menu, and 
to move between items in the list.

Inserting and deleting menus and menu items

To insert a new menu or menu item into an existing menu, select the 
rectangle where you want the new menu item to be (a new menu is 
inserted to the left of the selected menu on the menu bar, and a new menu 
item is inserted above the selected item in the menu list). Then do one of 
the following:

• Click the Insert button on the toolbar.

• Press the Ins key.

• Right-click and choose Insert Menu or Insert Menu Item.

To delete a menu item, select the menu item you want to delete, and do 
one of the following:

• Click the Delete Item button on the toolbar.

• Press the Del key.

Note A default placeholder (which you cannot delete) appears after the last 
menu on the menu bar and below the last item on a menu. This 
placeholder does not appear in your menu at runtime.



6-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

C r e a t i n g  m e n u s

Inserting separators

A separator inserts a horizontal line between menu items. You can use 
separators to group items within a menu list, or simply to provide a visual 
break in a list.

To insert a separator on a menu,

1 Select the menu item before which you want a separator.

2 Click the Insert Separator button on the toolbar.

The separator is inserted above the selected menu item.

Specifying accelerator keys

Accelerator keys enable the user to perform a menu action by typing in a 
shortcut key combination. For example, a commonly used shortcut for 
File|Save is Ctrl+S.

To specify an accelerator key for a menu item,

1 Select the menu item in the Menu designer or in the component tree.

2 In the Inspector, select the accelerator property and enter a value or 
choose a key combination from the drop-down list. This list is only a 
subset of the valid combinations you can use.

When you add a shortcut, it appears next to the menu item at runtime, 
but not otherwise.

Disabling (dimming) menu items

You can prevent users from accessing certain menu commands based on a 
particular state of the current program, without removing the command 
from the menu. For example, if no text is currently selected in a document, 
the Cut, Copy, and Delete items on the Edit menu appear dimmed.

To disable a menu item, set its enabled property to false. The default state 
of a menu item is true.

To disable a Swing menu item
• Click the Disable button on the toolbar. 

The Disable button toggles the enabled property for the selected menu 
item between true (enabled) and false (disabled).

• In the Inspector, set the enabled property for the menu item to false. (In 
contrast to the visible property, the enabled property leaves the item 
visible. A value of false simply dims the menu item.)



D e s i g n i n g  m e n u s 6-7

C r e a t i n g  m e n u s

Creating checkable menu items

To make a menu item checkable, you must change the menu item from a 
regular JMenuItem component to a JCheckBoxMenuItem. A JCheckBoxMenuItem 
has a state property (boolean) that determines if the associated event or 
behavior should be executed.

• A checked menu item has its state property set to true.

• An unchecked menu item has its state property set to false.

To change a regular menu item to a JCheckboxMenuItem, either select the 
menu item and click the Check button on the toolbar or right-click the 
menu item and choose Make It Checkable.

Creating Swing radio button menu items

The Menu designer lets you create Swing menu items that are part of a 
ButtonGroup in which only one item in the group can be selected. The 
selected item displays its selected state, causing any other selected items 
to switch to the unselected state.

To create a group of Swing radio button menu items,

1 In the Menu designer, create a menu or nested menu containing the 
menu items you want in the radio button group.

2 Right-click each of these menu items in the designer and choose Toggle 
Radio Item. (You could also select the menu item and click the 
RadioButton icon on the Menu designer toolbar.)

3 Click the Bean Chooser button on the component palette to open the 
Package browser. (If you have already added packages to your Bean 
Chooser list, choose Select.)

4 Expand javax.Swing and double-click ButtonGroup. The selection cursor is 
now holding ButtonGroup.

5 Click anywhere in the tree or the design surface. This adds a 
buttonGroup1 to the Default folder in the tree, and adds the following line 
to the class variables:

ButtonGroup buttonGroup1 = new ButtonGroup();

6 Click the Source tab, and, in the constructor’s try block after jbInit(), 
add each jRadioButtonMenuItem to buttonGroup1 as follows:

//Construct the frame
 public Frame1() {
   enableEvents(AWTEvent.WINDOW_EVENT_MASK);
   try  {
     jbInit();
     buttonGroup1.add(jRadioButtonMenuItem1);



6-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M o v i n g  m e n u  i t e m s

     buttonGroup1.add(jRadioButtonMenuItem2);
     buttonGroup1.add(jRadioButtonMenuItem3);
   }
   catch(Exception e) {
     e.printStackTrace();
   }
 }

7 Click the Design tab, and in the Inspector, set the selected property for 
one of the radio button menu items to true (whichever one you want 
selected as the default). The following line of code is added to your 
source:

jRadioButtonMenuItem2.setSelected(true);

8 Now, if you run your program, you’ll see the menu item whose 
selected property you set as true has a radio button to the left of it. If 
you click one of the other menu items, the radio button moves to the 
newly selected item.

Moving menu items
In the Menu designer, you can move menus and menu items simply by 
dragging and dropping them with the mouse. When you move a menu or 
a submenu, any items contained in it move as well.

You can move the following:

• Menus along the menu bar.

• Menu items within a menu.

• Menu items to other menus.

• Entire menus to a nest under a different menu item. (These become 
submenus.)

• Submenus up to the menu bar to create new menus.

• Submenu items to other menus.

The only exception to this is hierarchical: you cannot move a menu from 
the menu bar into itself; nor can you move a menu item into its own 
submenu. However, you can move any menu item into a different menu 
regardless of its original position.

To move a menu or menu item,

1 Drag it with the mouse until the tip of the cursor points to the new 
location.

If you are dragging the menu or menu item to another menu, drag it 
along the menu bar until the cursor points to the target menu. This 



D e s i g n i n g  m e n u s 6-9

C r e a t i n g  s u b m e n u s

opens the target menu, letting you drag and drop the menu or menu 
item to its new location.

2 Release the mouse button to drop the menu item into the new location.

Creating submenus
Many applications have menus containing drop-down lists that appear 
next to a menu item to provide additional, related commands. Such lists 
are indicated by an arrow to the right of the menu item. JBuilder supports 
as many levels of such nested menus, or submenus, as you want to build 
into your menu. However, for optimal design purposes you probably 
want to use no more than two or three menu levels in your UI design.

When you move a menu off the menu bar into another menu, its items 
become a submenu. Similarly, if you move a menu item into an existing 
submenu, its sub-items then form another nested menu under the 
submenu.

You can move a menu item into an existing submenu, or you can create a 
placeholder at a nested level next to an existing item, and then drop the 
menu item into the placeholder to nest it.

To create a submenu,

1 Select the menu item for which you want to create a submenu and do 
one of the following:

• Click the Insert Nested Submenu button on the toolbar.

• Right-click the menu item and choose Insert Submenu.

2 Type a name for the nested menu item, or drag an existing menu item 
into this placeholder.

3 Press Enter, or the Down arrow, to create the next placeholder.

4 Repeat steps 2 and 3 for each item you want to create in the nested 
menu.

5 Press Esc to return to the previous menu level.

Moving existing menus to submenus

You can also create a submenu by inserting a menu from the menu bar 
between menu items in another menu. When you move a menu into an 
existing menu structure, all its associated items move with it, creating a 
fully intact nested menu. This pertains to moving submenus as well; 
moving a submenu into another submenu just creates one more level of 
nesting.



6-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

A t t a c h i n g  c o d e  t o  m e n u  e v e n t s

Attaching code to menu events
A menu item has only one event: actionPerformed. Code that you add to the 
actionPerformed event for a menu item is executed whenever the user 
chooses that menu item or uses its keyboard shortcut.

To add code to a menu item’s actionPerformed event,

1 In the Menu designer, select a menu item.

2 In the Inspector, select the Events tab.

3 Select the column beside actionPerformed and double-click to create an 
event-handling method skeleton in the source code with a default 
name.

Note To override the default name for the actionPerformed event-handling 
method, single click in the event’s value field, type a new name for the 
event method and press Enter.

When you double-click the event value, the source code is displayed. 
The cursor is positioned in the body of the newly created 
actionPerformed event-handling method, ready for you to type.

4 Inside the open and close braces, type the code you want to have 
executed when the user clicks this menu command.

Example: Invoking a dialog box from a menu item

To display the File Open dialog box when the user chooses File|Open,

1 Create a File menu with an Open menu item.

2 On the Swing Containers page of the component palette, click the 
JFileChooser component and drop it on UI folder in the component tree.

3 In the Menu designer, or in the component tree, select the Open menu 
item.

4 In the Inspector, select the Events page.

5 Select the actionPerformed event and double-click to generate the 
following event-handling method skeleton in the source code, with 
your cursor in the correct location, waiting for you to type:

void jMenuItem1_actionPerformed(ActionEvent e) {
  |
}

Note JBuilder takes you to the existing event-handling method if there is one.

6 Inside the body of the actionPerformed method, type the following:

jFileChooser1.showOpenDialog(this);



D e s i g n i n g  m e n u s 6-11

C r e a t i n g  p o p - u p  m e n u s

7 In a real program, you will typically need to add several lines of custom 
code in the event-handling methods. For example, here you might want 
to extract the file name the user entered and use it to open or 
manipulate the file.

See also

• “Attaching event-handling code” on page 4-2

• “Connecting controls and events” on page 4-3

Creating pop-up menus
To create a pop-up menu,

1 In the designer, click a PopupMenu component from the AWT page of the 
component palette or a JPopupMenu component from the Swing 
Containers page and drop it into the component tree. It will be the 
selected item in the tree.

2 Press Enter on the selected PopupMenu or JPopupMenu in the component tree 
to open the Menu designer.

3 Add one or more menu items to the menu.

4 Select this(BorderLayout) in the component tree and press Enter to return 
to the designer.

5 Select the panel or other component to whose event you want the 
pop-up menu attached, so you can see that component in the Inspector. 
For the example below, jPanel1 was selected.

6 Click the Event tab in the Inspector.

7 Double-click the event for which you want the pop-up menu to appear. 
The MouseClicked event was selected in the example below.

8 Edit your event-handler skeleton code to resemble the following:

void jPanel1_mouseClicked(MouseEvent e) {
    jPanel1.add(jPopupMenu1); // JPopupMenu must be added to the component 
whose event is chosen.
    // For this example event, we are checking for right-mouse click.
    if (e.getModifiers() == Event.META_MASK)  {
     // Make the jPopupMenu visible relative to the current mouse position 
in the container.
      jPopupMenu1.show(jPanel1, e.getX(), e.getY());
    }
  }

9 Add event handlers to the pop-up menu items as needed for your 
application.



6-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



A d v a n c e d  t o p i c s 7-1

C h a p t e r

7
Chapter7Advanced topics

The component palette can be customized to include additional 
component libraries and individual JavaBeans. Distributed applications 
commonly require serializing, using customizers, and handling resource 
bundle strings. This document describes these tasks in JBuilder.

Managing the component palette
The component palette provides quick access to components on the 
CLASSPATH. By default, JBuilder displays all components on the CLASSPATH, 
sorted by libraries. For instance, the Swing tab in the component palette 
displays components in the Swing library.

JBuilder comes with several component libraries. Choose from among 
these using the different tabs of the component palette, the Add 
Component dialog box, or the Bean Chooser button. You can add 
components to the existing libraries or create new libraries for them.

You might want to install additional components delivered with JBuilder, 
components you created yourself, or third-party components. The 
following sections explain how to install additional components and 
pages on the palette, delete unused ones, and customize the palette.

See also

• “Working with libraries” in Building Applications with JBuilder.



7-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M a n a g i n g  t h e  c o m p o n e n t  p a l e t t e

Adding a component to the component palette

If your component is a JavaBean, you can add it to the component palette.

If the component is to be shared between projects, it should be added to a 
library that is on the CLASSPATH in each project where it will be used.

To place the component on the component palette,

1 Choose Tools|Configure Palette, or right-click a palette tab and choose 
Properties to display the Palette Properties dialog box.

2 Select the Pages tab. In the Pages column, select the palette page on 
which you want your component to appear, or click the Add button to 
create a new page.



A d v a n c e d  t o p i c s 7-3

M a n a g i n g  t h e  c o m p o n e n t  p a l e t t e

3 Click the Add Components tab where you select the component(s) 
you’re adding.

4 Press the Select Library button to open the Select A Different Library 
dialog box. Select an existing library from the list or create a new one by 
pressing New and using the New Library wizard. Click OK to close the 
dialog box.

5 Select the palette page to which you want the components added.

6 Select a filtering option:

• JavaBeans In Jar Manifest Only: automatically adds JavaBeans 
defined in the library’s JAR manifest to the selected page of the 
component palette.

• JavaBeans With BeanInfo Only: displays a list of JavaBeans with 
BeanInfo in the Browse For Class dialog box when the Add From 
Selected Library button is pressed.

• JavaBeans Only: displays a list of JavaBeans only in the Browse For 
Class dialog box when the Add From Selected Library button is 
pressed.

• No Filtering: displays an unfiltered list of all classes in the Browse 
For Class dialog box when the Add From Selected Library button is 
pressed.

7 Choose the Add From Selected Library button.

• If the JavaBeans In JAR Manifest Only option is selected, the 
JavaBeans are added automatically to the selected page. Continue to 
the last step to make your changes.



7-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

M a n a g i n g  t h e  c o m p o n e n t  p a l e t t e

8 If you selected one of the other options, the Browse For Class dialog 
box  displays. Select the individual classes you want from the Browse 
For Class dialog box, then click OK. A Results dialog box displays with 
the classes listed. Click OK.

9 Click OK to close the Palette Properties dialog box and make your 
changes.

The JBuilder component palette manager is an OpenTool that lets you add 
your own classes to the palette. Remember to keep backend material 
(access to databases, socket connections to other computers, distributed 
object interactions using RMI or CORBA, calculations and computations) 
in classes other than the UI classes.

Selecting an image for a component palette button

The image on a component palette button can be one of three things:

• An image defined in the bean’s BeanInfo class.

• A .gif file you select from the Item Properties dialog box.

• A default image provided by JBuilder if neither of the above are 
provided.

To select the image for your component palette button,

1 Either choose Tools|Configure Palette, or right-click the component 
palette and choose Properties. 

Both of these actions open the Palette Properties dialog box.

2 Select the Pages tab.

3 Select the appropriate library in the Page column and the component in 
the Components column.



A d v a n c e d  t o p i c s 7-5

M a n a g i n g  t h e  c o m p o n e n t  p a l e t t e

4 Either double-click the component, or click the Properties button. 

The Item Properties dialog box appears.

Note An image of the selected component is displayed in the Item Properties 
dialog box to the left of the Icon options.

5 Do one of the following:

• Choose Use JavaBean Icon to use the image provided by the bean for 
the button.

• Choose Select Image and click the Browse button to select a .gif file 
to be displayed on the button.

• Type in a new or different initialization string if you want to use a 
factory method or a constructor with more than one parameter 
instead of the default parameterless Bean constructor.

For best results, use a 32x32 .gif file.

6 Click OK to close the Item Properties dialog box.

7 Click OK in the Palette Properties dialog box when you’re finished.

Adding a page to the component palette

You can add a page of components to the component palette if you have 
the library of components on your path. To add a page to the palette,

1 Either choose Tools|Configure Palette, or right-click the component 
palette and choose Properties.

2 Select the Pages tab in the Palette Properties dialog box.

3 Click the Add button to open the Add Page dialog box.

4 Enter a name for the page in the Page Name field.

5 Click OK.

6 Select the new page in the Pages column and click the Move Up button 
to move it to the desired location on the palette.



7-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S e r i a l i z i n g

Pages added to the component palette also display in the Add Component 
dialog box.

Removing a page or component from the 
component palette

To remove a page or component from the palette,

1 Either choose Tools|Configure Palette, or right-click the component 
palette and choose Properties.

2 Select the Pages tab in the Palette Properties dialog box.

3 Select the appropriate page in the Page column and the component in 
the Components column.

4 Click Remove, then click OK.

Pages and components removed from the component palette no longer 
appear in the Add Component dialog box.

Note Removing a component from the component palette removes only the 
shortcut to that component. It does not remove the component from its 
library. Once a page or component has been removed from the component 
palette, it’s still accessible from the Browse or Search page of the Add 
Component dialog box.

Reorganizing the component palette

To change the order of the pages or components on the palette,

1 Choose Tools|Configure Palette, or right-click the component palette 
and choose Properties.

2 Select the Pages tab.

3 Select a page in the Pages column or a component in the Components 
column.

4 Click either Move Up or Move Down to move the selected item to a 
new location.

5 Click OK when you are finished.

Serializing
Serializing an object is the process of turning it into a sequence of bytes and 
saving it as a file on a disk or sending it over a network. When a request is 
made to restore an object from a file, or on the other end of a network 
connection, the sequence of bytes is deserialized into its original structure.



A d v a n c e d  t o p i c s 7-7

S e r i a l i z i n g

For JavaBeans, serialization provides a simple way to save the initial state 
for all instances of a type of class or bean. If the bean is serialized to a file 
and then deserialized the next time it’s used, the bean is restored exactly 
as the user left it.

Warning Use extreme caution when serializing components. Don’t attempt it until 
you know exactly what it entails and what the ramifications are.

See also

• “Serialization” in Getting Started with Java.

• Sun’s article, “Object Serialization”, at 
http://java.sun.com/j2se/1.3/docs/guide/serialization/.

Serializing components in JBuilder

JBuilder makes it easy to serialize JavaBeans in the designer. First, modify 
the bean using the Inspector to give it any settings you want to keep. Then 
follow these steps:

1 Select and right-click the component in the component tree.

2 Choose Serialize from the menu that appears. 

A message box appears, showing you the path and name for the new 
serialized file. It has the same name as the original component and a 
.ser extension.

3 Click OK to create the serialized file. The following occurs:

• A confirmation dialog box appears if the file already exists.

• The .ser serialization file is created starting at the first directory 
named on the Source Path, and it creates the appropriate package 
subdirectory path (for example myprojects/java/awt).

• The serialization file is added to your project as a node so it can be 
deployed with your project.

• JBuilder copies the .ser file from the Source Path to the Out Path 
during compiling.

The next time you instantiate that bean using Beans.instantiate(), the .ser 
file is read into memory.



7-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S e r i a l i z i n g

Serializing a this object

The rule for serialization is simple: to serialize, you need a live instance of 
the object you want to serialize. This presents a problem for a this object, 
because it is not instantiated the same way as components added to the 
designer. Therefore, you need an alternate way to get a live instance of this.

Of course you can serialize in code, but you generally serialize an object 
after you have used a RAD tool (like an Inspector) or a customizer to make 
changes to it.

The following example shows how you can serialize a this UI frame. You 
can modify these steps to serialize any type of object, such as a panel, class, 
dialog, or menu.

1 Open your project and create the class you want to serialize. 
(Frame1.java, for this example).

2 Save and compile it.

3 Open another file in your project that already has a class in it which can 
be, or has been, visually designed in JBuilder. (OtherFile.java in this 
example.)

4 Select OtherFile.java in the project pane, and create the following field 
declaration (instance variable) inside its class declaration, after any 
other declarations:

Frame1 f = new Frame1();

5 Click the Design tab to open the UI designer for OtherFile.java.

6 Right-click the “f” instance variable in the Default folder in the 
component tree, and choose Serialize. A message box appears, 
indicating the path and file name for the new serialized file.

7 Click OK.

To use the serialized file when you instantiate Frame1 in your application, 
you need to instantiate it in the Application file using Beans.instantiate(), 
as follows.

1 Change the constructor for Application1.java from

public Application1() {
  Frame1 frame = new Frame1();
  //Validate frames that have preset sizes
  //Pack frames that have useful preferred size info, e.g., from their 
layout
  if (packFrame)
    frame.pack();
  else
    frame.validate();
  frame.setVisible(true);
}



A d v a n c e d  t o p i c s 7-9

U s i n g  c u s t o m i z e r s  i n  t h e  d e s i g n e r

to

public Application1() {
  try {
    Frame1 frame = (Frame1)Beans.instantiate(getClass().getClassLoader(), 
Frame2.class.getName());
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g., from their 
layout
    if (packFrame)
      frame.pack();
    else
      frame.validate();
    frame.setVisible(true);
  }
  catch (Exception x) {
  }
}

2 Add the following import statement to the top of Application1.java:

import java.beans.*;

Using customizers in the designer
A JavaBean can name its own customizer, which is an editor specifically 
tailored for the bean’s class. During design time in JBuilder, right-click the 
component in the component tree and choose Customizer; any JavaBean 
that has a customizer displays the customizer’s dialog box. This dialog 
box is a wrapper around the customizer that lets you modify the object 
like you would in a property editor invoked from the Inspector.

The customizer doesn’t replace the JBuilder Inspector. The JavaBean 
simply hides any properties it doesn’t want the Inspector to display.

Modifying beans with customizers

One way to persist the results of a customized bean is through 
serialization. Therefore, whenever you close the customizer’s dialog, 
JBuilder will prompt you to save the object to a new .ser file or overwrite 
the old.

• If a bean is loaded with Beans.instantiate() in the designer and is then 
modified by the customizer, it can be saved again, either over the old 
name or into a new file.

• If a bean is loaded with Beans.instantiate() in the designer and is then 
modified by the Inspector, JBuilder still uses its old technique of 
writing Java source code for those property modifications. This means 
a customized, serialized bean can be further modified with the 
Inspector.



7-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

H a n d l i n g  r e s o u r c e  b u n d l e  s t r i n g s

JBuilder attempts to generate code for any property changes the 
customizer makes. Depending on how closely the customizer follows the 
JavaBeans specification, this may or may not be sufficient. Some 
sophisticated customizers make changes to the object that cannot be 
represented in code, leaving serialization as the only way to save the 
changes.

See also

• “Creating JavaBeans with BeansExpress” in Building Applications with 
JBuilder

• “Bean Customization” at 
http://java.sun.com/docs/books/tutorial/javabeans/
customization/index.html

Handling resource bundle strings
This is a feature of

JBuilder SE and
Enterprise.

You can use the Inspector to remove a property’s String value from a 
ResourceBundle file after you’ve resourced your project, or you can add a 
String value to a new or existing ResourceBundle file.

Right-click a property that takes a String value and choose 
ResourceBundle. The Localizable Property Setting dialog box displays.

To remove a resourced String from a ResourceBundle,

1 Select the ResourceBundle’s filename from the list in the Localizable 
Property Setting dialog box.

2 Select Store Text As String Constant. This removes a resourced String 
from its resource file.



A d v a n c e d  t o p i c s 7-11

H a n d l i n g  r e s o u r c e  b u n d l e  s t r i n g s

To add a String value to a new or existing ResourceBundle file,

1 Select Store Text In ResourceBundle For Localization.

2 Select the existing ResourceBundle file name to use, or click New to 
create a new one.

3 Select the ResourceBundle type and click OK.

Important If you remove a resourced component from the UI, it’s not automatically 
removed from its resource file. This avoids damage in case the key is used 
somewhere else in your code. You must open the resource file and 
manually remove the entry.

See also

• “Internationalizing programs with JBuilder” in Building Applications 
with JBuilder.

• Resource Strings wizard (Wizards|Resource Strings) in the online help.



7-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



U s i n g  l a y o u t  m a n a g e r s 8-1

C h a p t e r

8
Chapter8Using layout managers

A program written in Java may be deployed on multiple platforms. If you 
were to use standard UI design techniques, specifying absolute positions 
and sizes for your UI components, your UI won't be portable. What looks 
fine on your development system might be unusable on another platform. 
To solve this problem, Java provides a system of portable layout 
managers. You use these layout managers to specify rules and constraints 
for the layout of your UI in a way that will be portable.

Layout managers provide the following advantages:

• Correctly positioned components that are independent of fonts, screen 
resolutions, and platform differences.

• Intelligent component placement for containers that are dynamically 
resized at runtime.

• Ease of translation. If a string increases in length after translation, the 
associated components stay properly aligned.

About layout managers
A Java UI container (java.awt.Container) uses a special object called a layout 
manager to control how components are located and sized in the container 
each time it is displayed. A layout manager automatically arranges the 
components in a container according to a particular set of rules specific to 
that layout manager.

The layout manager sets the sizes and locations of the components based 
on various factors such as

• The layout manager's layout rules.

• The layout manager's property settings, if any.



8-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

A b o u t  l a y o u t  m a n a g e r s

• The layout constraints associated with each component.

• Certain properties common to all components, such as preferredSize, 
minimumSize, maximumSize, alignmentX, alignmentY.

• The size of the container.

Each layout manager has characteristic strengths and drawbacks. There 
are enough layout managers to choose from that you can find a layout 
manager to meet the requirements of each of your containers.

When you create a container in a Java program, you can either accept the 
default layout manager for that container type or override the default by 
specifying a different type of layout manager.

Normally, when coding a UI manually, you'll override the default layout 
manager before adding components to the container. When using the 
designer, you can change the layout whenever you like. JBuilder adjusts 
the code as needed on the fly. Change the layout either by explicitly 
adding a layout manager to the source code for the container, or by 
selecting a layout from the container's layout property list in the Inspector.

Important You cannot edit the layout properties for a <default layout>. If you want to 
modify the properties for a container's layout manager, you must specify 
an explicit layout manager; then its properties will be accessible in the 
Inspector.

Using null and XYLayout

XYLayout is a feature of
JBuilder SE and

Enterprise.

You choose a layout manager based on the overall design you want for the 
container. However, some layouts can be difficult to work with in the 
designer because they immediately take over placement and resizing of a 
component as soon as you drop it onto the container. To mitigate this 
effect while you're developing a UI in the designer, you can use null 
layout or the JBuilder custom layout called XYLayout. Both of these leave 
the components exactly where you place them and let you specify their 
sizes.

However, there are differences between the two:

• XYLayout knows about a component's preferredSize, so if you choose the 
preferredSize for the component (-1 value), XYLayout adjusts the size of 
the component to match the look and feel of your system. You can't do 
this with null layout.

• null clutters up your code with setBounds() calls. XYLayout doesn't.

Starting with null or XYLayout makes prototyping easier in your container. 
Later, after adding components to the container, you can switch to an 
appropriate portable layout for your design.

Important Be sure to convert all containers from null or XYLayout before deployment.



U s i n g  l a y o u t  m a n a g e r s 8-3

A b o u t  l a y o u t  m a n a g e r s

Because these layouts use absolute positioning, components do not adjust 
automatically when you resize the parent containers. These layouts do not 
adjust to differences in users and systems, and therefore, are not portable 
layouts. See “Layout managers: XYLayout” for more information.

In some designs, you might use nested panels to group components in the 
main container, using various different layouts for the main container and 
each of its panels.

Experiment with different layouts to see their effect on the container's 
components. If you find the layout manager you've chosen doesn't give 
you the results you want, try a different one or try nesting multiple panels 
with different layouts to get the desired effect.

For a more detailed discussion of each layout, see the individual topics for 
each layout in “Layouts provided with JBuilder” on page 8-11.

See also

• “XYLayout” on page 8-12

• “Using nested panels and layouts” on page 8-51

• “Laying out components within a container” in the Java Language 
Tutorial at http://java.sun.com/docs/books/tutorial/uiswing/index.html/

Understanding layout properties

Each container normally has some kind of layout manager attached to its 
layout property. The layout manager has properties that can affect the 
sizing and location of all components added to the container. These 
properties can be viewed and edited in the Inspector when the layout 
manager is selected in the component tree. The layout manager displays 
as an item in the tree just below the container to which it is attached.

Understanding layout constraints

For each component you drop into a container, JBuilder may instantiate a 
constraints object or produce a constraint value, which provides 
additional information about how the layout manager should size and 



8-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S e l e c t i n g  a  n e w  l a y o u t  f o r  a  c o n t a i n e r

locate this specific component. The type of constraint object or value 
created depends upon the type of layout manager being used. The 
Inspector displays the constraints of each component as if they were 
properties of the component itself, and it allows you to edit them.

Examples of layout properties and constraints

Below are some examples of layout properties and layout constraints:

• BorderLayout has properties called hgap (horizontal gap) and vgap 
(vertical gap) that determine the distance between components, while 
each component in the BorderLayout container has a constraint value, 
called constraints in the Inspector, with a possible value of NORTH, 
SOUTH, EAST, WEST, or CENTER.

• FlowLayout and GridLayout have properties you can use to modify the 
alignment of components or the vertical and horizontal gap between 
them.

• GridLayout has properties for specifying the number of rows and 
columns.

• GridBagLayout has no properties itself. However, each component placed 
into a GridBagLayout container has a constraints object associated with it 
that has many properties that control the component's location and 
appearance, such as

• The component's height and width

• Where the component is anchored in its cell

• How a component fills up its cell

• How much padding surrounds the component inside its cell

Selecting a new layout for a container
JBuilder provides a layout property in the Inspector for containers. You 
can easily choose a new layout for any container in the designer.

To select a new layout,

1 Select the container in the component tree.

2 Click the Properties tab in the Inspector and select the layout property.

3 Click the Down arrow at the end of the layout property's value field and 
choose a layout from the drop-down list.



U s i n g  l a y o u t  m a n a g e r s 8-5

S e l e c t i n g  a  n e w  l a y o u t  f o r  a  c o n t a i n e r

JBuilder does the following:

• Substitutes the new layout manager in the component tree.

• Changes the source code to add the new layout manager and updates 
the container's call to setLayout.

• Changes the layout of components in the designer.

• Updates the layout constraints for the container's components in the 
Inspector and in the source code.

Modifying layout properties

To modify the properties of a layout from the Inspector,

1 Select the layout you want to modify in the component tree. JBuilder 
displays the container's layout directly under each container in the tree. 
For example, in the following picture, gridLayout1 for jPanel1 is selected.

2 Select the Properties page in the Inspector and edit the layout's 
property values. For example, in a GridLayout, you can change the 
number of columns or rows in the grid and the horizontal and vertical 
gap between them.

The designer displays the changes immediately, and JBuilder modifies the 
source code's jbInit() method.

Modifying component layout constraints

When you drop a component into a container, JBuilder creates an 
appropriate constraint object or value for that container's layout manager. 
JBuilder automatically inserts this constraint value or object into the 
constraint property of that component in the Inspector. It also adds it to 



8-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U n d e r s t a n d i n g  s i z i n g  p r o p e r t i e s

the source code as a parameter of the add() method call in the jbInit() 
method.

To edit a component's layout constraints,

1 Select the component on the design surface or the component tree.

2 Select the constraints property in the Inspector.

3 Use the pull-down list or property editor to modify the constraints.

Understanding sizing properties
Layout managers use various pieces of information to determine how to 
position and size components in their containers. AWT components, 
including Swing components, provide a set of methods that allow layout 
managers to be intelligent when laying out components. All of these 
methods are provided so that a component can communicate its desired 
sizing to the component responsible for sizing it (usually a layout 
manager).

The methods for this are property getters and represent the following:

getPreferredSize() The size a component would choose to be, that is, 
the ideal size for the component to look best. 
Depending on the rules of the particular layout 
manager, the preferredSize may or may not be 
considered in laying out the container.

getMinimumSize() How small the component can be and still be usable. 
The minimumSize of a component may be limited, for 
example, by the size of a label. For most of the AWT 
controls, minimumSize is the same as preferredSize. 
Layout managers generally respect minimumSize more 
than they do preferredSize.

getMaximumSize() The largest, useful size for this component. This is 
so the layout manager won't waste space giving it to 
a component that can't use it effectively, and 
instead, giving it to another component that has 
only its minimumSize. For instance, BorderLayout could 
limit the center component's size to its maximum 
size and then either give the space to the edge 
components or limit the size of the outer window 
when resized.

getAlignmentX() How the component would like to be aligned along 
the x axis, relative to other components.

getAlignmentY() How the component would like to be aligned along 
the y axis, relative to other components.



U s i n g  l a y o u t  m a n a g e r s 8-7

D e t e r m i n i n g  t h e  s i z e  a n d  l o c a t i o n  o f  y o u r  U I  w i n d o w  a t  r u n t i m e

To understand how each layout manager uses these pieces of information, 
study the individual layouts described in “Layouts provided with 
JBuilder” on page 8-11.

Determining the size and location of your UI window at runtime
If your UI class is a descendant of java.awt.Window (such as a Frame or 
Dialog), you can control its size and location at runtime. The size and 
location is determined by a combination of what the code does when the 
UI window is created and what the user does to resize or reposition it.

When the UI window is created and various components are added to it, 
each component added affects the preferredSize of the overall window, 
typically making the preferredSize of the window container larger as 
additional components are added. The exact effect this has on 
preferredSize depends on the layout manager of the outer container, as 
well as any nested container layouts. For more details about the way that 
preferredLayoutSize is calculated for various layouts, see the sections in this 
document on each type of layout.

The size of the UI window, as set by your program (before any additional 
resizing that may be done by the user), is determined by which container 
method is called last in the code:

• pack()

• setSize()

The location of your UI at runtime will be at the 0,0 position in the top left 
corner of the screen, unless you override this by setting the location 
property of the container, for example, by calling setLocation() before 
making it visible.

Sizing a window automatically with pack()

When you call the pack() method on a window, you are asking it to 
compute its preferredSize based upon the components it contains, then 
size itself to that size. This generally has the effect of making it the 
smallest it can be while still respecting the preferredSize of the 
components placed within it.

You can call the pack() method to automatically set the window to a size 
that is as small as possible and still have all of the controls and 
subcontainers on it look good. Note that the Application.java file created 
by the Application wizard calls pack() on the frame it creates. This causes 
the frame to be packed to its preferredSize before being made visible.



8-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

D e t e r m i n i n g  t h e  s i z e  a n d  l o c a t i o n  o f  y o u r  U I  w i n d o w  a t  r u n t i m e

Calculating preferredSize for containers

preferredSize is calculated differently for containers with different layouts.

Portable layouts
Portable layouts, such as FlowLayout and BorderLayout, calculate their 
preferredSize based on a combination of the layout rules and the 
preferredSize of each component that was added to the container. If any of 
the components are themselves containers (such as a Panel), then the 
preferredSize of that Panel is calculated according to its layout and 
components, the calculation recursing into as many layers of nested 
containers as necessary.

For more information about preferredSize calculation for particular 
layouts, see the individual layout descriptions.

XYLayout
XYLayout is a feature of

JBuilder SE and
Enterprise.

For XYLayout containers, the preferredSize of the container is defined by the 
values specified in the width and height properties of the XYLayout. For 
example, if you have the following lines of code in your container 
initialization,

xYLayoutN.setWidth(400);
xYLayoutN.setHeight(300);

and if xYLayoutN is the layout manager for the container, then its 
preferredSize will be 400 x 300 pixels.

If one of the nested panels in your UI has XYLayout, then that panel's 
preferredSize is determined by the layout's setWidth() and setHeight() calls, 
and that is the value used for the panel in computing the preferredSize of 
the next outer container.

For example, in the default Application wizard application, the nested 
panel occupying the center of the frame's BorderLayout is itself initially in 
XYLayout and is set to size 400 x 300. This has a significant effect on the 
overall size of the frame when it is packed, because the nested panel 
report its preferredSize to be 400x300. The overall frame will be that plus 
the sizes necessary to satisfy the other components around it in the 
BorderLayout of the frame.

Explicitly setting the size of a window using setSize()

If you call setSize() on the container (rather than pack() or subsequent to 
calling pack()), then the size of the container will be set to a specific size in 
pixels. This basically has the same effect as the user manually sizing the 
container: it overrides the effect of pack() and preferredSize for the 
container and sets it to some new arbitrary size.



U s i n g  l a y o u t  m a n a g e r s 8-9

D e t e r m i n i n g  t h e  s i z e  a n d  l o c a t i o n  o f  y o u r  U I  w i n d o w  a t  r u n t i m e

Important Although you can certainly set the size of your container to some specific 
width and height, doing so makes your UI less portable because different 
screens have different screen resolutions. If you set size explicitly using 
setSize(), you must call validate() to get the children laid out properly. 
(Note that pack() calls validate()).

Making the size of your UI portable to various platforms

Generally, if you want the UI to be portable, you should use pack() and not 
explicitly setSize(), or you should give careful thought to the screen 
resolutions of various screens and do some reasonable calculation of the 
size to set.

For example, you may decide that, rather than calling pack(), you want to 
always have the UI show up at 75% of the width and height of the screen. 
To do this, you could add the following lines of code to your application 
class, instead of the call to pack():

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
frame.setSize(screenSize.width * 3 / 4, screenSize.height * 3 / 4);

Note Also, to ensure portability, change all XYLayout containers to a portable 
layout after prototyping.

Positioning a window on the screen

If you don't explicitly position your UI on the screen, it appears in the upper 
left corner of the screen. Often it is nicer to center the UI on the screen. This 
can be done by obtaining the width and height of the screen, subtracting the 
width and height of your UI, dividing the difference by two (in order to 
create equal margins on opposite sides of the UI), and using these half 
difference figures for the location of the upper left corner of your UI.

An example of this is the code that is generated by the Center Frame On 
Screen option of the Application wizard. This option creates additional 
code in the Application class which, after creating the frame, positions it in 
the center of the screen. Take a look at the code generated by this option to 
see a good example of how to center your UI.

//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height) {
   frameSize.height = screenSize.height;
}
if (frameSize.width > screenSize.width) {
   frameSize.width = screenSize.width;
}
frame.setLocation((screenSize.width - frameSize.width) / 2, 
  (screenSize.height - frameSize.height) / 2);



8-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

A d d i n g  c u s t o m  l a y o u t  m a n a g e r s

Placing the sizing and positioning method calls 
in your code

The calls to pack(), validate(), setSize(), or setLocation() can be made from 
inside the UI container class, for example, this.pack(). They can also be 
called from the class that creates the container (for example, frame.pack() 
called after invoking the constructor, before the setVisible()). The latter is 
what the Application wizard-generated code does: the calls to pack() or 
validate() and setLocation() are placed in the Application class, after the 
frame is constructed and the jbInit() is therefore finished.

How should you decide where to put your calls for sizing and positioning 
your UI?

• If you are constructing the UI from various places within your 
application, and you always want it to come up in the same size and 
place, you may want to consider putting such calls into the constructor 
of your UI container class (after the call to jbInit()).

• If your application only instantiates the UI from one place, as in the 
Application wizard-generated application, it is perfectly reasonable to 
put the sizing and positioning code in the place where the UI is created, 
in this case the Application class.

Adding custom layout managers
JBuilder supports the integration of other layout managers with its 
designer. To get a custom layout manager to appear in the Inspector's 
layout property list, create and register a layout assistant for it. There is a 
sample layout assistant in samples/OpenToolsAPI/layoutassistant.

The registration step is a one-line call to the initOpentool() static method. 
Extend BasicLayoutAssistant to tell it which layout assistant should handle 
your layout.

If the custom layout manager uses a constraint class, additional 
integration can be performed by supplying a class implementing 
java.beans.PropertyEditor for editing the constraint. This property editor 
would also need to be on the JBuilder classpath.



U s i n g  l a y o u t  m a n a g e r s 8-11

L a y o u t s  p r o v i d e d  w i t h  J B u i l d e r

You would then need to extend BasicLayoutAssistant and override two 
methods:

public java.beans.PropertyEditor  getPropertyEditor() {
//return an instance of the constraints property editor
 return new com.mycompany.MyLayoutConstrainteditor();
}
public String getContstraintsType () {
  // return the fully qualified constraint class name as a string, for example 
  return "com.mycompany.myLayout";
}

BasicLayoutAssistant is a skeletal implementation of the interface 
com.borland.jbuilder.designer.ui.LayoutAssistant.

Each layout manager must be associated with a class that implements this 
interface in order for the designer to be able to manipulate the layout. 
Layouts that do not have a layout assistant can still be used, but you 
cannot get BasicLayoutAssistant assigned to them, and therefore, you 
cannot move components or convert a container layout to such a layout.

See also

• OpenTools Custom Layout Assistants concept documentation.

• The LayoutAssistant sample, 
<jbuilder>/samples/OpenToolApi/LayoutAssistant/LayoutAssistant.jpx.

Layouts provided with JBuilder
JBuilder provides the following layout managers from Java AWT and 
Swing:

• BorderLayout
• FlowLayout
• GridLayout
• CardLayout
• GridBagLayout
• null

JBuilder SE and Enterprise also provide these custom layouts:

• XYLayout, which keeps components you put in a container at their 
original size and location (x,y coordinates)

• PaneLayout, used to control the percentage of the container each of its 
components occupies.

• VerticalFlowLayout, which is very similar to FlowLayout except that it 
arranges the components vertically instead of horizontally



8-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

X Y L a y o u t

• BoxLayout2, a bean wrapper class for Swing's BoxLayout, which allows it 
to be selected as a layout in the Inspector

• OverlayLayout2, a bean wrapper class for Swing's OverlayLayout, which 
allows it to be selected as a layout in the Inspector

Each of JBuilder's layout managers is explained in detail later in this section.

You can create custom layouts of your own, or experiment with other 
layouts such as the ones in the sun.awt classes or third-party layout 
managers. Many of these are public domain on the Web. If you want to 
use a custom layout in the designer, you may have to provide a layout 
assistant to help the designer use the layout.

Most UI designs will use a combination of layouts by nesting different 
layout panels within each other. To see how this is done, check the 
references below.

See also

• “Using nested panels and layouts” on page 8-51.

• Chapter 10, “Tutorial: Creating a UI with nested layouts”

XYLayout
This is a feature of

JBuilder SE and
Enterprise.

XYLayout is a JBuilder custom layout manager. XYLayout puts components in 
a container at specific x,y coordinates relative to the upper left corner of 
the container. Regardless of the type of display, the container will always 
retain the relative x,y positions of components. However, when you resize 
a container with an XYLayout, the components do not reposition or resize.

Important When you change a layout to XYLayout in the designer's Inspector, JBuilder 
adds this import statement to the source code: com.borland.jbcl.layout.*. 
Later, when you complete your UI and change XYLayout to a more portable 
layout before deploying, the import statement is not removed. You need to 
remove it manually if you don't want to import that class.

Figure 8.1 XYLayout example



U s i n g  l a y o u t  m a n a g e r s 8-13

X Y L a y o u t

XYLayout is very convenient for prototyping design work. When you 
design more complicated user interfaces with multiple, nested panels, 
XYLayout can be used for the initial layout of the panels and components, 
after which you can choose from one of the standard layouts for the final 
design.

Note To ensure your layout will be nicely laid out on other displays, don't leave 
any containers in XYLayout in your final design.

You can use the visual design tools to specify the container's size and its 
components' x,y coordinates.

• To specify the size of the XYLayout container, select the XYLayout object in 
the component tree and enter the pixel dimension for the height and 
width properties in the Inspector. This sets the size of the XYLayout 
container.

• To change the x,y values for a component inside an XYLayout container, 
do one of the following:

• on the design surface, drag the component to a new size. JBuilder 
automatically updates the constraint values in the Inspector.

• Select the component in the component tree, then click the 
constraints property edit field and enter coordinates for that 
component.

Aligning components in XYLayout

You can adjust the alignment of a group of selected components in a 
container that uses XYLayout. Alignment does not work for other layouts.

With alignment operations, you can make a set of components the same 
width, height, left alignment, and so on, so that they look cleanly 
organized.

To align components,

1 Select the components you wish to align. The order of selection affects 
the alignment, as described in the table below.

2 Right-click a selected component on the design surface and select the 
alignment operation you wish to perform.

See also

• “Using layout managers” on page 8-1



8-14 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

X Y L a y o u t

Alignment options for XYLayout

The following table explains the alignment options available from the 
context menu:

null

null layout means that no layout manager is assigned to the container. Not 
specifying a layout is very similar to using XYLayout in that you can put 
components in a container at specific x,y coordinates relative to the upper 
left corner of the container. You must specify each component's x,y 
coordinates in its constraints property. Later, you can switch to an 
appropriate portable layout for your design. Be sure to specify a layout 
manager for the container before deployment, because otherwise 
components do not adjust when you resize the parent container nor to 
differences in users and systems.

Select this To do this

Move To First Move the selected component to the top of the Z-order.

Move To Last Move the selected component to the bottom of the 
Z-order.

Align Left Line up the left edges of the components with the left 
edge of the first selected component.

Align Center Horizontally line up the centers of the components 
with the center of the first selected component.

Align Right Line up the right edges of the components with the 
right edge of the first selected component.

Align Top Line up the top edges of the components with the top 
edge of the first selected component.

Align Middle Vertically line up the centers of the components with 
the middle of the first selected component.

Align Bottom Line up the bottom edges of the components with the 
bottom edge of the first selected component.

Even Space Horizontal Evenly space the components horizontally between the 
first and last selected components.

Even Space Vertical Evenly space the components vertically between the 
first and last selected components.

Same Size Horizontal Make the components all the same width as the first 
selected component.

Same Size Vertical Make the components all the same height as the first 
selected component.



U s i n g  l a y o u t  m a n a g e r s 8-15

B o r d e r L a y o u t

BorderLayout
BorderLayout arranges a container's components in areas named North, 
South, East, West, and Center. These are BorderLayout's placement 
constraints.

• The components in North and South are given their preferred height 
and are stretched across the full width of the container.

• The components in East and West are given their preferred width and 
are stretched vertically to fill the space between the north and south 
areas.

• The component in the Center expands to fill all remaining space.

Figure 8.2 BorderLayout's placement constraints

JBuilder drops new components into the Center placement of the 
container by default. Existing components in the container are pushed to 
the sides as new components are added: first North, then South, then 
West, then East. Change the placement of a component by selecting the 
component, selecting the Constraints property in the Inspector, and 
choosing a different placement from the drop-down list.

There are only five placements available in a BorderLayout container. If you 
need to add more than five components to a container using this layout 
manager, either nest the components or use a different layout manager. 
Change a layout manager by selecting the container, selecting the Layout 
property in the Inspector, and choosing a different layout manager from 
the drop-down list.

In the Java AWT, all windows (including frames and dialog boxes) use 
BorderLayout by default.

BorderLayout is good for forcing components to one or more edges of a 
container and for filling up the center of the container with a component. 
It is also the layout you want to use to cause a single component to 
completely fill its container.



8-16 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

B o r d e r L a y o u t

BorderLayout is a useful layout manager for the larger containers in your 
UI. By nesting a panel inside each area of the BorderLayout, then populating 
each of those panels with other panels of various layouts, you can create 
rich UI designs.

Setting constraints

For example, to put a toolbar across the top of a BorderLayout container, 
you could create a FlowLayout panel of buttons and place it in the North 
area of the container. You do this by selecting the panel and choosing 
North for its constraints property in the Inspector.

To set the constraints property,

1 Select the component you want to position, either on the design surface 
or the component tree.

2 Select the constraints property in the Inspector.

3 Click the Down arrow on the constraints property drop-down list and 
select the area you want the component to occupy.

4 Press Enter or click anywhere else in the Inspector make the change. 
This change is immediately reflected in the code as well as the design.

If you use JBuilder's visual design tools to change the layout of a container 
from another layout to BorderLayout, the components near the edges 
automatically move to fill the closest edge. A component near the center 
may be set to Center. If a component moves to an unintended location, 
you can correct the constraints property in the Inspector, or drag the 
component around on the design surface.

As you drag a component around in a BorderLayout container, the design 
surface displays a rectangle to demonstrate which area of the container 
the component will snap to if you drop it.

Each of the five areas can contain only one component (or panel of 
components), so be careful when changing an existing container to 
BorderLayout.

• Make sure the container has no more than five components.

• Use XYLayout first to move the components to their approximate 
intended positions, with only one component near each edge.

• Group multiple components in one area into a panel before converting.

Note BorderLayout ignores the order in which you add components to the 
container.

By default, BorderLayout puts no gap between the components it manages. 
However, you can use the Inspector to specify the horizontal or vertical 
gap in pixels for a layout associated with a container.



U s i n g  l a y o u t  m a n a g e r s 8-17

F l o w L a y o u t

To modify the gap surrounding BorderLayout components, select the 
BorderLayout object in the component tree (displayed immediately below 
the container it controls), then modify the pixel value in the Inspector for 
the hgap and vgap properties.

See also

• “Using nested panels and layouts” on page 8-51

FlowLayout
FlowLayout arranges components in rows from left to right and then top to 
bottom using each component's natural, preferredSize. FlowLayout lines up 
as many components as it can in a row, then moves to a new row. 
Typically, FlowLayout is used to arrange buttons on a panel. In the Java 
AWT, all panels (including applets) use FlowLayout by default.

Figure 8.3 FlowLayout example

Note If you want a panel that arranges the components vertically, rather than 
horizontally, see “VerticalFlowLayout” on page 8-18.  VerticalFlowLayout is 
a feature of JBuilder SE and Enterprise.

You can choose how to arrange the components in the rows of a FlowLayout 
container by specifying an alignment justification of left, right, or center. 
You can also specify the amount of gap (horizontal and vertical spacing) 
between components and rows. Use the Inspector to change both the 
alignment and gap properties when you're in the designer.

Alignment

LEFT — groups the components at the left edge of the container. 
CENTER — centers the components in the container. 
RIGHT — groups the components at the right edge of the container.

The default alignment in a FlowLayout is CENTER.



8-18 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

F l o w L a y o u t

To change the alignment, select the FlowLayout object displayed below the 
container it controls in the component tree, then specify a value in the 
Inspector for the alignment property.

Gap
The default gap between components in a FlowLayout is 5 pixels.

To change the horizontal or vertical gap, select the FlowLayout object in the 
component tree, then modify the pixel value of the hgap (horizontal gap) or 
vgap (vertical gap) property in the Inspector.

Order of components
To change the order of the components in a FlowLayout container, drag the 
component to the new location, or right-click a component and choose 
Move To First or Move To Last.

VerticalFlowLayout

This is a feature of
JBuilder SE and

Enterprise.

VerticalFlowLayout arranges components in columns from top to bottom, 
then left to right using each component's natural, preferredSize. 
VerticalFlowLayout lines up as many components as it can in a column, 
then moves to a new column. Typically, VerticalFlowLayout is used to 
arrange buttons on a panel.

Figure 8.4 VerticalFlowLayout example

You can choose how to arrange the components in the columns of a 
VerticalFlowLayout container by specifying an alignment justification of 
top, middle, or bottom. You can also specify the amount of gap (horizontal 
and vertical spacing) between components and columns. It also has 
properties that let you specify if the components should fill the width of 
the column, or if the last component should fill the remaining height of the 
container. Use the Inspector to change these properties when you're in the 
designer.



U s i n g  l a y o u t  m a n a g e r s 8-19

F l o w L a y o u t

Alignment
TOP — groups the components at the top of the container. 
MIDDLE — centers the components vertically in the container. 
BOTTOM — groups the components so the last component is at the 
bottom of the container.

The default alignment in a VerticalFlowLayout is TOP.

To change the alignment, select the VerticalFlowLayout object displayed 
below the container it controls in the component tree, then specify a value 
in the Inspector for the alignment property.

Gap
The default gap between components in a VerticalFlowLayout is 5 pixels.

To change the horizontal or vertical gap, select the VerticalFlowLayout 
object in the component tree, then modify the pixel value of the hgap 
(horizontal gap) or vgap (vertical gap) property in the Inspector.

Horizontal fill
horizontalFill lets you specify a Fill To Edge flag which causes all the 
components to expand to the container's width.

Figure 8.5 horizontalFill example

Warning This causes problems if the main panel has less space than it needs. It also 
prohibits multi-column output.

The default value for horizontalFill is True.



8-20 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

F l o w L a y o u t

Vertical fill
verticalFill lets you specify a Vertical Fill Flag that causes the last 
component to fill the remaining height of the container.

Figure 8.6 verticalFill example

The default value for verticalFill is False.

Order of components
To change the order of the components in a VerticalFlowLayout container, 
drag the component to the new location, or right-click a component and 
choose Move To First or Move To Last.

BoxLayout2

This is a feature of
JBuilder SE and

Enterprise.

BoxLayout2 is Swing's BoxLayout wrapped as a Bean so it can be selected as a 
layout in the Inspector. It combines both FlowLayout and 
VerticalFlowLayout functionality into one layout manager.

When you create a BoxLayout2 container, you specify whether its major axis 
is the x-axis (left to right placement) or y-axis (top to bottom placement). 
Components are arranged from left to right (or top to bottom) in the same 
order as they were added to the container.

See also

• BoxLayout in the Swing documentation.



U s i n g  l a y o u t  m a n a g e r s 8-21

G r i d L a y o u t

GridLayout
GridLayout places components in a grid of cells that are in rows and 
columns. GridLayout expands each component to fill the available space 
within its cell. Each cell is exactly the same size and the grid is uniform. 
When you resize a GridLayout container, GridLayout changes the cell size so 
the cells are as large as possible, given the space available to the container.

Figure 8.7 GridLayout example

Use GridLayout if you are designing a container where you want the 
components to be of equal size, for example, a number pad or a toolbar.

Columns and rows

You can specify the number of columns and rows in the grid. The basic 
rule for GridLayout is that one of the rows or columns (not both) can be 
zero. You must have a value in at least one so the GridLayout manager can 
calculate the other.

For example, if you specify four columns and zero rows for a grid that has 
15 components, GridLayout creates four columns of four rows, with the last 
row containing three components. Or, if you specify three rows and zero 
columns, GridLayout creates three rows with five full columns.

Gap

In addition to number of rows and columns, you can specify the number 
of pixels between the cells using horizontal gap (hgap) and vertical gap 
(vgap). The default horizontal and vertical gap is zero.

To change the property values for a GridLayout container using the visual 
design tools, select the GridLayout object displayed below the container it 
controls in the component tree, then edit the values for the rows, cols, hgap, 
or vgap in the Inspector.



8-22 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

C a r d L a y o u t

CardLayout
CardLayout places components (usually panels) on top of each other in a 
stack like a deck of cards. You see only one at a time, and you can flip 
through the panels by using another control to select which panel comes 
to the top.

Figure 8.8 CardLayout example

CardLayout is a good layout to use when you have an area that contains 
different components at different times. This gives you a way to manage 
two or more panels that need to share the same display space.

CardLayout is usually associated with a controlling component, such as a 
check box or a list. The state of the controlling component determines 
which component the CardLayout displays. The user makes the choice by 
selecting something on the UI.

Creating a CardLayout container

The following example of a CardLayout container controlled by a checkbox 
demonstrates how to create the container in the designer, then hook up a 
checkbox to switch the panels. This example uses the JPanel and JCheckBox 
components from the Swing page of the component palette.

1 Create a new project and application with the Application wizard.

2 Select the Frame1.java file in the project pane, then click the Design tab at 
the bottom of the AppBrowser to open the UI designer.

3 Add a panel (jPanel1) to the contentPane in the UI designer.

4 Set its layout property to XYLayout.

5 Add a panel (jPanel2) to the lower half of JPanel1.

6 Set its layout to CardLayout.



U s i n g  l a y o u t  m a n a g e r s 8-23

C a r d L a y o u t

7 Drop a new panel (jPanel3) onto this CardLayout panel by clicking jPanel2 
in the component tree. This new panel completely fills up the CardLayout 
panel.

Note The first component you add to a CardLayout panel always fills the 
panel. To add additional panels to it, click the CardLayout panel in the 
component tree to drop the component, rather than clicking on the 
design surface.

8 Change its background color property or add UI components to it so it's 
distinguishable.

9 Drop another panel (jPanel4) onto jPanel2 in the component tree. Notice 
that there are now two panels under jPanel2 in the component tree.

10 Change the background color of jPanel4 or add components to it.

Creating the controls

Now that you have a stack of two panels in a CardLayout container, you 
need to add a controlling component to your UI, such as a JList or 
JCheckBox, so the user can switch the focus between each of the panels.

1 Add a JCheckBox (jCheckBox1) to jPanel1 that will be used to toggle 
between the two panels in the CardLayout container.

2 Select the Events tab in the Inspector for jCheckBox1 and double-click the 
actionPerformed event to create the event in the source code.

3 Add the following code to the jCheckBox1_actionPerformed(ActionEvent e) 
method :

if (jCheckBox1.isSelected())
   ((CardLayout)jPanel2.getLayout()).show(jPanel2,"jPanel4");
else
  ((CardLayout)jPanel2.getLayout()).show(jPanel2,"jPanel3");

4 Compile and run your program. Click the check box on and off to 
change the panels in the CardLayout container.

Specifying the gap

Using the Inspector, you can specify the amount of horizontal and vertical 
gap surrounding a stack of components in a CardLayout.



8-24 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

1 Select the CardLayout object in the component tree displayed 
immediately below the container it controls.

2 Click hgap (horizontal gap) or vgap (vertical gap) property in the 
Inspector.

3 Enter the number of pixels you want for the gap.

4 Press Enter or click anywhere else in the Inspector to register the 
changes.

OverlayLayout2

This is a feature of
JBuilder SE and

Enterprise.

OverlayLayout2 is Swing's OverlayLayout, wrapped as a Bean so it can be 
selected as a layout in the Inspector. It is very much like the CardLayout in 
that it places the components on top of each other.

Unlike CardLayout, where only one component at a time is visible, the 
components can be visible at the same time if you make each component 
in the container transparent. For example, you could overlay multiple 
transparent images on top of another in the container to make a composite 
graphic.

See also

• OverlayLayout in the Swing documentation.

GridBagLayout
GridBagLayout is an extremely flexible and powerful layout that provides 
more control than GridLayout in laying out components in a grid. 
GridBagLayout positions components horizontally and vertically on a 
dynamic rectangular grid. The components do not have to be the same 
size, and they can fill up more than one cell.



U s i n g  l a y o u t  m a n a g e r s 8-25

G r i d B a g L a y o u t

Figure 8.9 GridBagLayout example

GridBagLayout determines the placement of its components based on each 
component's constraints and minimum size, plus the container's preferred 
size.

GridBagLayout can accommodate either a complex grid or components held 
in smaller panels nested inside the GridBagLayout container. These nested 
panels can use other layouts and can contain additional panels of 
components. The nested method has two advantages:

• It gives you more precise control over the placement and size of 
individual components because you can use more appropriate layouts 
for specific areas, such as button bars.

• It uses fewer cells, simplifying the GridBagLayout and making it much 
easier to control.

See also

• Chapter 11, “GridBagLayout tutorial”

Display area

The definition of a grid cell is the same for GridBagLayout as it is for 
GridLayout: a cell is one column wide by one row deep. However, unlike 
GridLayout where all cells are equal in size, GridBagLayout cells can be 
different heights and widths and a component can occupy more than one 
cell horizontally and vertically.

This area occupied by a component is called its display area, and it is 
specified with the component's GridBagConstraints gridwidth and 
gridheight (number of horizontal and vertical cells in the display area).



8-26 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

For example, in the following GridBagLayout container, component “4” 
spans one cell (or column) horizontally and two cells (rows) vertically. 
Therefore, its display area consists of two cells.

A component can completely fill up its display area (as with component 
“4” in the example above), or it can be smaller than its display area.

For example, in the following GridBagLayout container, the display area for 
component “3” consists of nine cells, three horizontally and three 
vertically. However, the component is smaller than the display area 
because it has insets which create a margin between the edges of the 
display area and the component.

Even though this component has both horizontal and vertical fill 
constraints, since it also has insets on all four sides of the component 
(represented by the double blue nibs on each side of the display area), 
these take precedence over the fill constraints. The result is that the 
component only fills the display area up to the insets.

If you try to make the component larger than its current display area, 
GridBagLayout increases the size of the cells in the display area to 
accommodate the new size of the component and leaves space for the 
insets.



U s i n g  l a y o u t  m a n a g e r s 8-27

G r i d B a g L a y o u t

A component can also be smaller than its display area when there are no 
insets, as with component “6” in the following example.

Even though the display area is only one cell, there are no constraints that 
enlarge the component beyond its minimum size. In this case, the width of 
the display area is determined by the larger components above it in the 
same column. Component “6” is displayed at its minimum size, and since 
it is smaller than its display area, it is anchored at the west edge of the 
display area with an anchor constraint.

As you can see, GridBagConstraints play a critical role in GridBagLayout. We'll 
look at these constraints in detail in the next topic, “About 
GridBagConstraints”.

See also

• “How to use GridBagLayout” in Sun's Java tutorial.

• “GridBagLayout” in the JDK documentation.

About GridBagConstraints

GridBagLayout uses a GridBagConstraints object to specify the layout 
information for each component in a GridBagLayout container. Since there is 
a one-to-one relationship between each component and GridBagConstraints 
object, you need to customize the GridBagConstraints object for each of the 
container's components.

GridBagLayout components have the following constraints:

• anchor

• gridx, gridy

• ipadx, ipady

• gridwidth, gridheight

• fill

• insets

• weightx, weighty



8-28 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

GridBagConstraints let you control

• The position of each component, absolute or relative.

• The size of each component, absolute or relative.

• The number of cells each component spans.

• How each cell's unused display area gets filled.

• How much weight is assigned to each component to control how 
components utilize extra available space. This controls the components' 
behavior when resizing the container.

For a detailed explanation of each of the constraints, including tips for 
using them and setting them in the designer, see the individual constraint 
topics below.

See also

• Chapter 11, “GridBagLayout tutorial”

Setting GridBagConstraints manually in the source code
When you use the designer to design a GridBagLayout container, JBuilder 
always creates a new GridBagConstraints object for each component you 
add to the container. GridBagConstraints has a constructor that takes all 
eleven properties of GridBagConstraints.

For example,

    jPanel1.add(gridControl1, 
                      new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,
                          GridBagConstraints.CENTER, 
                          GridBagConstraints.BOTH, 
                          new Insets(35, 73, 0, 0), 0, 0));
    jPanel1.add(treeControl1, 
                      new GridBagConstraints(1, 0, 1, 2, 1.0, 1.0,
                          GridBagConstraints.CENTER, 
                          GridBagConstraints.BOTH, 
                           new Insets(5, 0, 162, 73), 0, 0));

You can modify the parameters of the GridBagConstraints constructor 
directly in the source code, or you can use the GridBagConstraints Editor 
in the designer to change the values.

When you create a GridBagLayout container by coding it manually, you 
really only need to create one GridBagConstraints object for each 
GridBagLayout container. GridBagLayout uses the GridBagConstraints default 
values for the component you add to the container, or it reuses the most 
recently modified value. If you want the component you're adding to the 
container to have a different value for a particular constraint, then you 
only need to specify the new constraint value for that component. This 
new value stays in effect for subsequent components unless, or until, you 
change it again.



U s i n g  l a y o u t  m a n a g e r s 8-29

G r i d B a g L a y o u t

Note While this method of coding GridBagLayout is the leanest, recycling 
constraint values from previously added components, it doesn't allow you 
to edit that container visually in JBuilder's designer.

Modifying existing GridBagLayout code to work 
in the designer

If you have a GridBagLayout container that was previously coded manually 
by using one GridBagConstraints object for the container, you cannot edit 
that container in the designer without making the following modifications 
to the code:

• You must create a new JDK 1.3 GridBagConstraints object for each 
component added to the container, which has the large constructor with 
parameters for each of the eleven constraint values, as shown above.

Designing GridBagLayout visually in the designer

GridBagLayout is a complex layout manager that requires some study and 
practice to understand it, but once it is mastered, it is extremely useful. 
JBuilder has added some special features to the visual design tools that 
make GridBagLayout much easier to design and control, such as a 
GridBagConstraints Editor, a grid, drag and drop editing, and a context 
menu on selected components.

There are two approaches you can take to designing GridBagLayout in the 
designer. You can design it from scratch by adding components to a 
GridBagLayout panel, or you can prototype the panel in the designer using 
another layout first, such as XYLayout, then convert it to GridBagLayout when 
you have all the components arranged and sized the way you want.

Whichever method you use, it is recommended that you take advantage of 
using nested panels to group the components, building them from the 
inside out. Use these panels to define the major areas of the GridBagLayout 
container. This greatly simplifies your GridBagLayout design, giving you 
fewer cells in the grid and fewer components that need GridBagConstraints.

Converting to GridBagLayout

When you prototype your layout in another layout first, such as XYLayout, 
the conversion to GridBagLayout is cleaner and easier if you are careful 
about the alignment of the panels and components as you initially place 
them, especially left and top alignment. Keep in mind that you are 
actually designing a grid, so try to place the components inside an 
imaginary grid, and use nested panels to keep the number of rows and 
columns as small as possible.



8-30 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

Using XYLayout for prototyping gives you the advantage of component 
alignment functions on the component's context menu. 

XYLayout is a feature of
JBuilder SE and

Enterprise.

As the UI designer converts the XYLayout container to GridBagLayout, it 
assigns constraint values for the components based on where the 
components were before you changed the container to GridBagLayout. 
Often, only minor adjustments are necessary, if any.

Converting to GridBagLayout assigns weight constraints to certain types of 
components (those which you would normally expect to increase in size 
as the container is enlarged at runtime, such as text areas, fields, group 
boxes, or lists). If you need to make adjustments to your design after 
converting to GridBagLayout, you'll find the task much easier if you remove 
all the weight constraints from any components first (set them all to zero).

If even one component has a weight constraint value greater than zero, it is 
hard to predict the sizing behavior in the designer due to the complex 
interactions between all the components in the container.

You can easily spot a GridBagLayout whose components have weights 
because the components are not clustered together in the center of the 
container. Instead, the components fill the container to its edges.

Tip When you remove all the weights from the components in a GridBagLayout, 
one of two things occur:

• If the container is large enough for the grid, the components cluster 
together in the center of the container, with any extra space around the 
edges of the grid.

• If the container is too small for the components, the grid expands 
beyond the edges of the container and the components that are off the 
edges of the container are invisible. Just enlarge the size of the container 
until all the components fit. If the GridBagLayout container you are 
designing is a single panel in the center of the main UI frame, enlarge 
the size of the frame. You can resize this container to the final size after 
you have finished setting all the components' constraints.

See also

• “GridBagConstraints” on page 8-34 for more details on weight 
constraints.



U s i n g  l a y o u t  m a n a g e r s 8-31

G r i d B a g L a y o u t

Adding components to a GridBagLayout container

If you want to create your GridBagLayout by starting out with a new 
GridBagLayout container and adding all the components to it from scratch, 
there are certain behaviors you should expect.

• Since the default weight constraint for all components is zero, when you 
add the first component to the container, it locates to the center of the 
container at its minimumSize. You now have a grid with one row and one 
column.

• The next component you add goes in an adjacent cell, depending on 
where you click. If you click under the first component, it goes on the 
next row in that column. If you click to the right of the component, it 
goes on the same row in the next column. All subsequent components 
are added the same way, increasing the number of cells by one as you 
add each one.

• Once you have several components or cells containing components, 
you can use the mouse to drag the components to new cell locations, or 
you can change the gridx and gridy constraints in the 
GridBagConstraints Editor, accessible from the component design 
surface context menu.

• No matter how many components you add, as long as the grid stays 
smaller than the container, they all cluster together in the middle of the 
container. If you need a bigger container, simply enlarge it in the 
designer.

• If after several rows, your design has been fitting nicely into a certain 
number of columns, then you suddenly have a row that requires an 
odd number of components, consider dropping a panel into that row 
that takes up the entire row, and use a different layout inside that panel 
to achieve the look you want.

A good example of this is the Sort property editor shown at the end of 
this section. All of the container's components can fit into two columns 
except the three buttons at the bottom. If you try to add these buttons 
individually in the row, GridBagLayout does not handle them well. Extra 
columns are created which affect the placement of the components 
above it. To simplify the grid and guarantee the buttons would behave 
the way we expected when the container was resized at runtime, we 
used a GridLayout panel two columns wide to hold the buttons.



8-32 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

Setting GridBagConstraints in the GridBagConstraints 
Editor

All the GridBagConstraints can be specified in the designer without having 
to edit the source code. This is possible with the GridBagLayout 
GridBagConstraints Editor.

One advantage to using the GridBagConstraints Editor for setting 
constraints is the ability to change constraints for multiple components at 
the same time. For example, if you want all the buttons in your 
GridBagLayout container to use the same internal padding, you can hold 
down the Shift key while you select each one, then open the 
GridBagConstraints Editor and edit the constraint.

To use the GridBagConstraints Editor,

1 Select the component(s) within the GridBagLayout container you want to 
modify, either in the component tree or on the design surface.

2 Do one of the following to open the GridBagConstraints Editor:

• Select the constraints property in the Inspector, then click the ellipsis 
button.

• Right-click the component on the design surface and choose 
Constraints.

• Select the component in the component tree, press Shift+F10, and 
choose Constraints.

3 Set the desired constraints in the property editor, then click OK.

Note If you need assistance when using the GridBagConstraints Editor, press 
the Help button or F1.



U s i n g  l a y o u t  m a n a g e r s 8-33

G r i d B a g L a y o u t

Displaying the grid
The design surface displays an optional grid that lets you see exactly what 
is happening with each cell and component in the layout.

• To display this grid, right-click a component in the GridBagLayout 
container and select Show Grid. A check mark is put beside the menu to 
show that Show Grid is selected.

• To hide the grid temporarily when Show Grid is selected, click a 
component that is not in the GridBagLayout container (including the 
GridBagLayout container itself) and the grid disappears. The grid is only 
visible when a component inside a GridBagLayout container is selected.

• To hide the grid permanently, right-click a component and select Show 
Grid again to remove the checkmark.

Using the mouse to change constraints
The design surface allows you to use the mouse for setting some of the 
constraints by dragging the whole component or by grabbing various 
sizing nibs on the component. Directions for setting constraints visually 
are included in the individual constraint topics below.

Using the GridBagLayout context menu
Right-clicking a GridBagLayout component or selecting it and pressing 
Shift+F10 displays a context menu that gives you instant access to the 
GridBagConstraints Editor, and lets you quickly set or remove certain 
constraints.

Menu Command Action

Show Grid Displays the GridBagLayout grid in the UI designer.

Constraints Displays the GridBagConstraints Editor for the selected 
GridBagLayout component.

Remove Padding Sets any size padding values (ipadx and ipady) for the selected 
component to zero.

Fill Horizontal Sets the fill constraint value for the component to 
HORIZONTAL. The component expands to fill the cell 
horizontally. If the fill was VERTICAL, it sets the constraint 
to BOTH.

Fill Vertical Sets the fill constraint value for the component to 
VERTICAL. The component expands to fill the cell vertically. 
If the fill was HORIZONTAL, it sets the constraint to BOTH.

Remove Fill Changes the fill constraint value for the component to 
NONE.

Weight Horizontal Sets the weightx constraint value for the component to 1.0.

Weight Vertical Sets the weighty constraint value for the component to 1.0

Remove Weights Sets both weightx and weighty constraint values for the 
component to 0.0.



8-34 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

GridBagConstraints
The following section lists each of the GridBagConstraints separately. It 
defines each one, explaining its valid and default values, and tells you 
how to set that constraint visually in the designer.

See also

• Chapter 11, “GridBagLayout tutorial,” for more tips on setting 
GridBagConstraints in the designer.

anchor

When the component is smaller than its display area, use the anchor 
constraint to tell the layout manager where to place the component within 
the area.

The anchor constraint only affects the component within its own display 
area, depending on the fill constraint for the component. For example, if 
the fill constraint value for a component is GridBagConstraints.BOTH (fill 
the display area both horizontally and vertically), the anchor constraint has 
no effect because the component takes up the entire available area. For the 
anchor constraint to have an effect, set the fill constraint value to 
GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL, or 
GridBagConstraints.VERTICAL

Setting the anchor constraint in the designer
You can use the mouse to set the anchor for a component that is smaller 
than its cell. You simply click the component and drag it, dragging the 
component toward the desired location at the edge of its display area, 
much like you would dock a movable toolbar. For example, to anchor a 
button to the upper left corner of the cell, click the mouse in the middle of 
the button and drag it until the upper left corner of the button touches the 
upper left corner of the cell. This sets the anchor constraint value to NW.

You can also specify the anchor constraint in the GridBagConstraints 
Editor.

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.

3 Select the desired anchor constraint value in the Anchor area, then press 
OK.



U s i n g  l a y o u t  m a n a g e r s 8-35

G r i d B a g L a y o u t

fill

When the component's display area is larger than the component's 
requested size, use the fill constraint to tell the layout manager which 
parts of the display area should be given to the component.

As with the anchor constraint, the fill constraint only affects the 
component within its own display area. fill tells the layout manager to 
expand the component to fill the whole area it has been given.

Specifying the fill constraint in the designer
The fastest way to specify the fill constraint for a component is to use the 
component's context menu on the design surface.

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Do one of the following:

• Select Fill Horizontal to set the value to HORIZONTAL

• Select Fill Vertical to set the value to VERTICAL.

• Select both Fill Horizontal and Fill Vertical to set the value to BOTH.

• Select Remove Fill to set the value to NONE.

You can also specify the fill constraint in the GridBagConstraints Editor.

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.

3 Select the desired fill constraint value in the Fill area, then press OK.

gridwidth, gridheight

Use these constraints to specify the number of cells in a row (gridwidth) or 
column (gridheight) the component uses. This constraint value is stated in 
cell numbers, not in pixels.



8-36 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

Specifying gridwidth and gridheight constraints in the designer
You can specify gridwidth and gridheight constraint values in the 
GridBagConstraints Editor.

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.

3 In the Grid Position area, enter a value for gridwidth in the Width field , 
or a value for gridheight in the Height field. Specify the number of cells 
the component will occupy in the row or column.

• If you want the value to be RELATIVE, enter a -1.

• If you want the value to be REMAINDER, enter a 0.

You can use the mouse to change the gridwidth or gridheight by sizing the 
component into adjacent empty cells.

gridx, gridy

Use these constraints to specify the grid cell location for the upper left 
corner of the component. For example, gridx=0 is the first column on the 
left and gridy=0 is the first row at the top. Therefore, a component with the 
constraints gridx=0 and gridy=0 is placed in the first cell of the grid (top 
left).

GridBagConstraints.RELATIVE specifies that the component be placed relative 
to the previous component as follows:

• When used with gridx, it specifies that this component be placed 
immediately to the right of the last component added.

• When used with gridy, it specifies that this component be placed 
immediately below the last component added.

Specifying the grid cell location in the designer
You can use the mouse to specify which cell the upper left corner of the 
component will occupy. Simply click near the upper left corner of the 
component and drag it into a new cell. When moving components that 
take up more than one cell, be sure to click in the upper left cell when you 
grab the component, or undesired side effects can occur. Sometimes, due 
to existing values of other constraints for the component, moving the 
component to a new cell with the mouse may cause changes in other 
constraint values, for example, the number of cells that the component 
occupies might change.



U s i n g  l a y o u t  m a n a g e r s 8-37

G r i d B a g L a y o u t

To more precisely specify the gridx and gridy constraint values without 
accidentally changing other constraints, use the GridBagConstraints 
Editor.

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.

3 In the Grid Position area, enter the column number for gridx value in 
the X field or the row number for gridy value in the Y field. If you want 
the value to be RELATIVE, enter a -1.

Important When you use the mouse to move a component to an occupied cell, the UI 
designer ensures that two components never overlap by inserting a new 
row and column of cells so the components are not on top of each other. 
When you relocate the component using the GridBagConstraints Editor, 
the designer does not check to make sure the components don't overlap.

insets

Use insets to specify the minimum amount of external space (padding) in 
pixels between the component and the edges of its display area. The inset 
says that there must always be the specified gap between the edge of the 
component and the corresponding edge of the cell. Therefore, insets work 
like brakes on the component to keep it away from the edges of the cell. 
For example, if you increase the width of a component with left and right 
insets to be wider than its cell, the cell expands to accommodate the 
component plus its insets. Because of this, fill and padding constraints 
never steal any space from insets.

Setting inset values in the designer
The design surface displays blue sizing nibs on a selected GridBagLayout 
component to indicate the location and size of its insets. Grab a blue nib 
with the mouse and drag it to increase or decrease the size of the inset.

• When an inset value is zero, you will only see one blue nib on that side 
of the cell, as shown below.



8-38 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

• When an inset value is greater than zero, the design surface displays a 
pair of blue nibs for that inset, one on the edge of the cell and one on 
the edge of the display area. The size of the inset is the distance 
(number of pixels) between the two nibs. Grab either nib to change the 
size of the inset.

For more precise control over the inset values, use the GridBagConstraints 
Editor to specify the exact number of pixels.

1 Right-click the component in the UI designer and choose Constraints to 
display the GridBagConstraints Editor.

2 In the External Insets area, specify the number of pixels for each inset: 
top, left, bottom, or right.

Note While negative inset values are legal, they can cause components to 
overlap adjacent components, and are not recommended.

ipadx, ipady

These constraints specify the internal padding for a component:

• ipadx specifies the number of pixels to add to the minimum width of the 
component.

• ipady specifies the number of pixels to add to the minimum height of 
the component.

Use ipadx and ipady to specify the amount of space in pixels to add to the 
minimum size of the component for internal padding. For example, the 
width of the component will be at least its minimum width plus ipadx in 
pixels. The code only adds it once, splitting it evenly between both sides of 
the component. Similarly, the height of the component will be at least the 
minimum height plus ipady pixels.

Example
When added to a component that has a preferred size of 30 pixels wide 
and 20 pixels high:

• If ipadx= 4, the component is 34 pixels wide.

• If ipady= 2, the component is 22 pixels high.



U s i n g  l a y o u t  m a n a g e r s 8-39

G r i d B a g L a y o u t

Setting the size of internal padding constraints in the designer
You can specify the size of a component's internal padding by clicking on 
any of the black sizing nibs at the edges of the component, and dragging 
with the mouse.

If you drag the sizing nib beyond the edge of the cell into an empty 
adjacent cell, the component occupies both cells (the gridwidth or 
gridheight values increase by one cell).

Before:

After:

For more precise control over the padding values, use the 
GridBagConstraints Editor to specify the exact number of pixels to use for 
the value:

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.

3 In the Size Padding area, specify the number of pixels for the Width 
and Height values.

To quickly remove the padding (set it to zero), right-click the component 
in the UI designer and choose Remove Padding. You can also select 
multiple components and use the same procedure to remove the padding 
from all of them at once.

Note Negative values make the component smaller than its preferred size and 
are perfectly valid.



8-40 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

weightx, weighty

Use the weight constraints to specify how to distribute a GridBagLayout 
container's extra space horizontally (weightx) and vertically (weighty) when 
the container is resized. Weights determine what share of the extra space 
gets allocated to each cell and component when the container is enlarged 
beyond its default size.

Weight values are of type double and are expressed as a ratio. Only 
positive values are legal. Any ratio format is legal. Mentally assign a total 
weight to the components in the same row or column, then code a given 
part of that weight to each component. When you add all of the given 
weights of all the components together, you should have the total weight 
you had in mind.

• A row's vertical weight determines the row's height relative to the other 
rows. This weight equals the largest weighty value of the components in 
the row. The determining factor is height, which is measured on the y 
axis.

• A column's horizontal weight determines the column's width relative 
to the other columns. This weight equals the largest weightx value of the 
components in the column. The determining factor is width, which is 
measured on the x axis.

In theory, only the largest components in a row or column will determine 
the layout, so you only need one component per row or column that 
specifies a weight.

Setting weightx and weighty constraints in the designer
To specify the weight constraints for a component in the designer, access 
the component designer context menu. Either select the component in the 
tree and press Shift+F10 or right-click the component, then choose Weight 
Horizontal (weightx), or Weight Vertical (weighty). This sets the value to 1.0. 
To remove the weights (set them to zero), right-click the component and 
choose Remove Weights. You can do this for multiple components: hold 
down the Shift key when selecting the components, then right-click and 
choose the appropriate menu item.

If you want to set the weight constraints to be something other than 0.0 or 
1.0, you can set the values in the GridBagConstraints Editor:

1 Activate the component's design context menu in one of two ways:

• Right-click the component on the design surface.

• Select the component in the component tree and press Shift+F10.

2 Choose Constraints.



U s i n g  l a y o u t  m a n a g e r s 8-41

G r i d B a g L a y o u t

3 Enter a value between 0.0 and 1.0 for the X (weightx) or Y (weighty) value 
in the Weight area, then press OK.

Important Because weight constraints can make the sizing behavior in the UI designer 
difficult to predict, setting these constraints should be the last step in 
designing a GridBagLayout.

Examples of how weight constraints affect components' behavior
• If all the components have weight constraints of zero in a single 

direction, the components clump together in the center of the container 
for that dimension and won't expand beyond their preferred size. 
GridBagLayout puts any extra space between its grid of cells and the 
edges of the container.

• If you have three components with weightx constraints of 0.0, 0.6, and 
0.4 respectively, when the container is enlarged, none of the extra space 
will go to the first component, 6/10 of it goes to the second component, 
and 4/10 of it goes to the third.

• You need to set both the weight and fill constraints for a component if 
you want it to grow. For example, if a component has a weightx 
constraint, but no horizontal fill constraint, then the extra space goes 
to the padding between the left and right edges of the component and 
the edges of the cell. It enlarges the width of the cell without changing 
the size of the component. If a component has both weight and fill 
constraints, then the extra space is added to the cell, plus the 
component expands to fill the new cell dimension in the direction of the 
fill constraint (horizontal in this case).

The three pictures below demonstrate this.

In the first example, all the components in the GridBagLayout panel have 
a weight constraint value of zero. Because of this, the components are 
clustered in the center of the GridBagLayout panel, with all the extra 
space in the panel distributed between the outside edges of the grid 



8-42 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

and the panel. The size of the grid is determined by the preferred size of 
the components, plus any insets and padding (ipadx or ipady).

Next, a horizontal weight constraint of 1.0 is specified for the 
ListControl. Notice that as soon as one component is assigned any 
weight, the UI design is no longer centered in the panel. Since a 
horizontal weight constraint was used, the GridBagLayout manager takes 
the extra space in the panel that was previously on each side of the grid, 
and puts it into the cell containing the ListControl. Also notice that the 
ListControl did not change size.

Tip If there is more space than you like inside the cells after adding weight 
to the components, decrease the size of the UI frame until the amount of 
extra space is what you want. To do this, select the this(BorderLayout) 
frame on the design surface or the component tree, then click its black 
sizing nibs and drag the frame to the desired size.

Finally, if a horizontal fill is then added to the ListControl, the 
component expands to fill the new horizontal dimension of the cell.

• If one component in a column has a weightx value, GridBagLayout gives 
the whole column that weight. Conversely, if one component in a row 
has a weighty value, the whole row is assigned that weight.



U s i n g  l a y o u t  m a n a g e r s 8-43

G r i d B a g L a y o u t

See also

• “GridBagConstraints” in the JDK documentation.

Sample GridBagLayout source code

Notice that, except for the three buttons on the bottom, the rest of the 
components fit nicely into a grid of two columns. If you try to keep the 
three buttons in their own individual cells, you would have to add a third 
column to the design, which means the components above would have to 
be evenly split across three columns. You could probably have a total of 
six columns and come up with a workable solution, but the buttons 
wouldn't stay the same size when the container is resized at runtime.

There are two other ways you could handle this situation.

• Put a GridLayout panel that is two columns wide at the bottom of the 
grid and add the three buttons to it.

• Put a GridLayout panel containing the buttons into the outer BorderLayout 
frame. Giving it a constraint of SOUTH, and the BorderLayout pane a 
constraint of CENTER.

Either way, the resizing behavior of the buttons should be satisfactory.

Here is the relevant source code for this GridBagLayout example:

package sort;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import com.borland.jbcl.layout.*;

public class Frame1 extends JFrame {
  JPanel contentPane;
  BorderLayout borderLayout1 = new BorderLayout();
  JPanel jPanel1 = new JPanel();
  JPanel jPanel2 = new JPanel();
  JLabel jLabel1 = new JLabel();
  JList jList1 = new JList();



8-44 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g L a y o u t

  JButton jButton1 = new JButton();
  JCheckBox jCheckBox1 = new JCheckBox();
  JButton jButton2 = new JButton();
  JCheckBox jCheckBox2 = new JCheckBox();
  JPanel jPanel3 = new JPanel();
  JList jList2 = new JList();
  JLabel jLabel2 = new JLabel();
  JPanel jPanel4 = new JPanel();
  JButton jButton3 = new JButton();
  JButton jButton4 = new JButton();
  JButton jButton5 = new JButton();
  GridBagLayout gridBagLayout1 = new GridBagLayout();
  GridBagLayout gridBagLayout2 = new GridBagLayout();
  GridBagLayout gridBagLayout3 = new GridBagLayout();
  GridLayout gridLayout1 = new GridLayout();

  //Construct the frame
  public Frame1() {
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try {
      jbInit();
    }
    catch(Exception e) {
      e.printStackTrace();
    }
  }

  //Component initialization
  private void jbInit() throws Exception  {
    contentPane = (JPanel) this.getContentPane();
    contentPane.setLayout(borderLayout1);
    this.setSize(new Dimension(400, 300));
    this.setTitle("Sort");
    jPanel1.setLayout(gridBagLayout3);
    jPanel2.setBorder(BorderFactory.createRaisedBevelBorder());
    jPanel2.setLayout(gridBagLayout2);
    jLabel1.setFont(new java.awt.Font("SansSerif", 0, 12));
    jLabel1.setForeground(Color.black);
    jLabel1.setText("Available columns");
    jList1.setBorder(BorderFactory.createLoweredBevelBorder());
    jButton1.setFont(new java.awt.Font("SansSerif", 0, 12));
    jButton1.setBorder(BorderFactory.createRaisedBevelBorder());
    jButton1.setText("Add to Sort");
    jCheckBox1.setText("Case insensitive");
    jCheckBox1.setFont(new java.awt.Font("Dialog", 0, 12));
    jButton2.setText("Remove from Sort");
    jButton2.setBorder(BorderFactory.createRaisedBevelBorder());
    jButton2.setFont(new java.awt.Font("SansSerif", 0, 12));
    jCheckBox2.setFont(new java.awt.Font("Dialog", 0, 12));
    jCheckBox2.setText("Descending");
    jPanel3.setLayout(gridBagLayout1);
    jPanel3.setBorder(BorderFactory.createRaisedBevelBorder());
    jList2.setBorder(BorderFactory.createLoweredBevelBorder());
    jLabel2.setFont(new java.awt.Font("SansSerif", 0, 12));



U s i n g  l a y o u t  m a n a g e r s 8-45

G r i d B a g L a y o u t

    jLabel2.setForeground(Color.black);
    jLabel2.setText("Sorted columns");
    jButton3.setText("Help");
    jButton4.setText("OK");
    jButton5.setText("Cancel");
    jPanel4.setLayout(gridLayout1);
    gridLayout1.setHgap(10);
    gridLayout1.setVgap(10);
    contentPane.add(jPanel1, BorderLayout.CENTER);
    jPanel1.add(jPanel2, new GridBagConstraints(1, 0, 1, 1, 1.0, 1.0
            ,GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
                new Insets(6, 10, 0, 19), 0, 2));
    jPanel2.add(jList1, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0
            ,GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
                new Insets(0, 7, 0, 9), 160, 106));
    jPanel2.add(jButton1, new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0
            ,GridBagConstraints.CENTER, GridBagConstraints.NONE, 
                new Insets(8, 7, 0, 9), 90, 2));
    jPanel2.add(jCheckBox1, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0
            ,GridBagConstraints.CENTER, GridBagConstraints.NONE, 
                new Insets(11, 13, 15, 15), 31, 0));
    jPanel2.add(jLabel1, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
            ,GridBagConstraints.WEST, GridBagConstraints.NONE, 
                new Insets(4, 7, 0, 15), 54, 8));
    jPanel1.add(jPanel3, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0
            ,GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
                new Insets(6, 9, 0, 0), 0, 2));
    jPanel3.add(jList2, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0
            ,GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
                new Insets(0, 7, 0, 9), 160, 106));
    jPanel3.add(jButton2, new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0
            ,GridBagConstraints.CENTER, GridBagConstraints.NONE, 
                new Insets(8, 7, 0, 9), 50, 2));
    jPanel3.add(jCheckBox2, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0
            ,GridBagConstraints.CENTER, GridBagConstraints.NONE, 
                new Insets(11, 13, 15, 15), 56, 0));
    jPanel3.add(jLabel2, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0
            ,GridBagConstraints.WEST, GridBagConstraints.NONE, 
                new Insets(4, 7, 0, 15), 67, 8));
    jPanel1.add(jPanel4, new GridBagConstraints(0, 1, 2, 1, 1.0, 1.0
            ,GridBagConstraints.CENTER, GridBagConstraints.HORIZONTAL, 
                new Insets(15, 71, 13, 75), 106, 0));
    jPanel4.add(jButton4, null);
    jPanel4.add(jButton5, null);
    jPanel4.add(jButton3, null);
  }

  //Overridden so we can exit on System Close
  protected void processWindowEvent(WindowEvent e) {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING) {
      System.exit(0);
    }
  }
}



8-46 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a n e L a y o u t

PaneLayout
This is a feature of

JBuilder SE and
Enterprise.

PaneLayout allows you to specify the size of a component in relation to its 
sibling components. PaneLayout applied to a panel or frame lets you control 
the percentage of the container the components will have relative to each 
other, but does not create moveable splitter bars between the panes.

Figure 8.10 PaneLayout example

In a PaneLayout, the placement and size of each component is specified 
relative to the components that have already been added to the container. 
Each component specifies a PaneConstraints object that tells the layout 
manager from which component to take space, and how much of its 
existing space to take. Each component's PaneConstraints object is applied 
to the container as it existed at the time the component was added to the 
container. The order in which you add the components to the container is 
very important.

PaneConstraints variables

A PaneConstraints component has a constraint that consists of four 
variables:

String name The name for this component (must be unique for 
all components in the container — as in 
CardLayout).

String 
splitComponentName

The name of the component from which space will 
be taken to make room for this component.



U s i n g  l a y o u t  m a n a g e r s 8-47

P a n e L a y o u t

How components are added to PaneLayout

PaneLayout adds components to the container in the following manner:

• The first component will always take all the area of the container. The 
only important variable in its PaneConstraint is its name, so the other 
components have a value to specify as their splitComponentName.

• The second component has no choice in specifying its 
splitComponentName. The only choice is the name of the first component.

• The splitComponentName of subsequent components may be the name of 
any component that has already been added to the container.

Creating a PaneLayout container in the designer

To create a PaneLayout container,

1 Add a container to your UI in the designer.

2 Change the container's layout property to PaneLayout. This allows you to 
access the PaneLayout properties in the Inspector and change the width 
of the splitter bars.

String position The edge of the splitComponentName to which this 
component will be anchored.

Valid values are:

PaneConstraints.TOP
This component will be above splitComponentName.

PaneConstraints.BOTTOM
This component will be below splitComponentName.

PaneConstraints.RIGHT
This component will be to the right of 
splitComponentName.

PaneConstraints.LEFT
This component will be to the left of 
splitComponentName.

PaneConstraints.ROOT
This component is the first component added.

float proportion The proportion of splitComponentName that will be 
allocated to this component. A number between 0 
and 1.



8-48 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a n e L a y o u t

3 Select a component on the component palette, and drop it into the 
PaneLayout container. This component will completely fill up the 
container until you add another component to split this one.

4 Select another component, and drag it across the first component to 
indicate where you want it to be anchored and how much space to take 
away from the first component.

For example,

• If you want the panes to be vertical between a right and left half of 
the panel, drag the mouse starting from the top left corner of the 
panel to the middle of the bottom edge.

• If you want the panes to be horizontal between an upper and lower 
half, drag the mouse starting from the top left corner to the middle of 
the right edge.

Note To make the edges of the components visible, we added a lowered 
bevel border to each component in the Inspector.

The layout manager will now split the space between the two 
components, giving the second component the area you defined, and 
giving the first component the rest of the frame or panel.

Important If the first component you added to a PaneLayout container was itself a 
container, the UI designer assumes you are trying to add the second 
component to the outer container instead of to the PaneLayout container. 
To specify to the UI designer that you want to add components to 
containers other than those at the top of the Z-order, select the target 
container, then hold down the Ctrl key while clicking or dragging the 
component on the design surface.

5 To add a third component to the PaneLayout, draw it similarly to define 
its relative position to the other components.



U s i n g  l a y o u t  m a n a g e r s 8-49

P a n e L a y o u t

For example, to split the left half of the container, begin drawing the 
third component starting from the middle of the left edge of the panel 
to bottom left corner of the second component.

6 Use the same method to add subsequent components.

Modifying the component location and size in the Inspector

You can use the Inspector to modify which splitComponent edge a 
component should be anchored to and the proportion of the splitComponent 
this component should occupy.

To do this,

1 Select the component.

2 In the Inspector, select the constraints property, then click the ellipsis 
button to open the Constraints property editor.

3 Select one of the following positions: Top, Bottom, Left, Right or Root. 
These values are relative to the component named in the Splits field in 
the property editor.

4 Specify the proportion of the split component this component should 
occupy.

5 Press OK.

Note You can also resize the component by selecting it and dragging on the 
nibs. Moving a component is also allowed, however this will change the 
add order of the components.



8-50 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P r o t o t y p i n g  y o u r  U I

Prototyping your UI
Before you start creating your UI, you may want to sketch your UI design 
on paper to get an idea of the overall strategy you'll use for placing 
various panels and components and for assigning layouts. You can also 
prototype your UI directly in the designer. JBuilder provides a null layout 
assistant and, in JBuilder SE and Enterprise, XYLayout which make the 
initial design work easier.

Use XYLayout and null layout for prototyping

When you initially add a new panel of any type to the designer, you'll 
notice that the layout property in the Inspector says <default layout>. This 
means the designer will automatically use the default layout for that 
container. However, you should immediately change the layout property 
to the layout manager you want to use so it is visible in the component 
tree and its constraints can be modified in the Inspector. You cannot edit 
layout properties for <default layout>.

To control the layout of your components during prototyping, switch each 
container to XYLayout or null layout as soon as you drop it into your design. 
These layouts use pixel coordinates to position the components. This 
means the components you add to an container will stay at the location 
you drop them and at the size you specify with the mouse.

See also

• “Layouts provided with JBuilder” on page 8-11 for more information 
on layout constraints.

Design the big regions first

We recommend that you start designing the big regions of your UI first, 
then work down into finer details within those regions as you go, using 
XYLayout or null layout exclusively. Once the design is right, work 
systematically from the inner regions outward, converting the panels to 
more portable layouts such as FlowLayout, BorderLayout, or GridLayout, 
making minor adjustments if necessary.



U s i n g  l a y o u t  m a n a g e r s 8-51

U s i n g  n e s t e d  p a n e l s  a n d  l a y o u t s

Usually, you place a container in your design first, then add components 
to it. However, you can also draw a new container around existing 
components, although these components won't automatically nest into the 
new panel. After drawing the container, you must explicitly move each 
component in the container. You may even need to move it out of the 
container, then back in. Watch the component tree to see when it nests 
properly. Each component inside a container is indented in the 
component tree under its container. If the component is at the same level 
of indentation with a panel, it is not inside it yet.

Save before experimenting

You should expect that when you start designing in JBuilder, you will 
inevitably do things by trial and error, especially once you start changing 
the layouts to something other than XYLayout or null layout. Be sure to save 
your file before experimenting with a layout change. Then if it doesn't 
work, you can go back.

Even when you plan your UI first, you may discover that a particular 
layout you planned to use just doesn't work as you expected. This might 
mean reworking the design and using a different configuration of 
containers, components, and layouts. For this reason, you might want to 
copy the container file (for example Frame1.java) to a different name and 
location at critical times during the design process, so you won't have to 
start over.

One thing that will speed up your UI design work in the future is to create 
separate JavaBean components, such as toolbars, status bars, check box 
groups, or dialog boxes, that you can add to the component palette and 
reuse with little or no modifications.

Using nested panels and layouts
Most UI designs in Java use more than one type of layout to get the 
desired results by nesting multiple panels with different layouts in the 
main container. You can also nest panels within other panels to gain more 
control over the placement of components. By creating a composite design 
and by using the appropriate layout manager for each panel, you can 
group and arrange components in a way that is both functional and 
portable.



8-52 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

U s i n g  n e s t e d  p a n e l s  a n d  l a y o u t s

For example, the following UI example demonstrates the use of nested 
panels with different layouts: BorderLayout, FlowLayout, and 
GridLayout. The entire UI is contained in a contentPane using BorderLayout

See also

• Chapter 10, “Tutorial: Creating a UI with nested layouts,” to work 
through the tutorial that builds this UI.

• Chapter 5, “Creating user interfaces,” for more about using the 
designer.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-1

C h a p t e r

9
Chapter9Tutorial: Building a Java

text editor
This step-by-step tutorial uses JBuilder to build, test and run a Java 
application called “Text Editor”. This application is a simple text editor 
capable of reading, writing, and editing text files.

This text editor will be able to set the text color and background color of 
the text editing region. In the JBuilder SE and Enterprise versions of the 
tutorial, it will also be able to set the text font.

The tutorial takes approximately two hours to complete.

What this tutorial demonstrates
Some steps in this tutorial

are specific to JBuilder
SE and Enterprise

editions. This is noted at
the top of those steps.

The Text Editor tutorial uses the Project and Application wizards to create 
a project and a set of visually designable files. Then it shows you how to 
use the visual design tools, modify the UI design, hook up events, and edit 
source code. It steps you through handling events for commonly used 
components and tasks, such as menu items, a toolbar, a text area, and 



9-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

W h a t  t h i s  t u t o r i a l  d e m o n s t r a t e s

system events. It contains specific examples that show you how to do the 
following:

• Use the JFileChooser dialog box to allow the user to select a file.

• Read and write text from a text file and manipulate text with a 
JTextArea.

• Set foreground and background colors.

• Set the font using the dbSwing FontChooser dialog. This is a feature of 
JBuilder SE and Enterprise.

• Display information in a status bar and in the window caption.

• Add code manually to handle UI events.

• Have a menu item and a button execute the same code by putting the 
code in a new helper method called by both event handlers.

• Add a context menu to the JTextArea component.

• Keep track of the current filename and whether the file has been 
changed since the last save. Shows you how to handle the logic of this 
for File|New, File|Open, File|Save, File|SaveAs, editing, and exiting 
the file.

• Deploy the “Text Editor” application to a JAR file. This is a feature of 
JBuilder SE and Enterprise.

This tutorial contains code and text that you’re expected to add. If you’re 
using this tutorial onscreen, you can copy and paste code and blocks of 
text from the tutorial into the required fields.

Important If you’re using a UNIX-based system and have installed JBuilder as root 
but are running as a regular user, copy the Samples tree to a directory in 
which you have full read/write permissions.

Sample code for this tutorial

To see the complete source for the TextEditor sample, open the sample 
project:

In Personal <jbuilder>/samples/swing/SimpleTextEditor/SimpleTextEditor.jpx

In SE and Enterprise <jbuilder>/samples/TextEditor/TextEditor.jpx

The SimpleTextEditor project doesn’t include deployment code or code for 
setting background color. The TextEditor project does.

See also

• Chapter 1, “Visual design in JBuilder”

• “Using the AppBrowser” in Introducing JBuilder.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-3

S t e p  1 :  S e t t i n g  u p

• “Building Java programs” in Building Applications with JBuilder.

• “Debugging Java programs” in Building Applications with JBuilder.

Step 1: Setting up
This tutorial creates a text editor that allows you to create, edit, and save 
files.

The functionality that allows you to create files is added after certain other 
functions are in place. We will test other functions first, such as opening 
and editing a file. Therefore, you need a file to work on.

1 Using your file manager, create a plain text file named tester.txt. 

Make sure that you have full read/write access and that it’s a file that 
can be changed indiscriminately without harming any work.

2 Put text in it. You may copy and paste the text below:

Some text to use.

Text that will extend past one line in order to check that line wrap works 
properly and displays as it should.

3 Save the file.

Next, create a project and the necessary files for building the text editor’s 
user interface. We’ll use the Project wizard to create the project, adjust 
some project settings manually, then use the Application wizard to create 
our files.

Creating the project

The Project wizard creates a new JBuilder project to work in.

1 Choose File|New Project to open the Project wizard.

2 Make the following changes in Step 1:

• Name: TextEditor

Note By default, JBuilder uses this project name as the project’s directory 
name and the package name for the classes inside the project.

• Check the Generate Project Notes File option. 

When you check this option, the Project wizard creates an HTML file 
for project notes and adds it to the project.

• If you have other projects open, uncheck the Add Project To Active 
Project Group option. This is a separate project.

3 Accept all other defaults in Step 1.



9-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 :  S e t t i n g  u p

4 Click Next to go to Step 2 of the Project wizard.

5 Accept the default paths in Step 2.

6 Click Next to continue to Step 3 of the Project wizard.

7 Fill out the optional Javadoc fields.

a In the Title field, type Text Editor Tutorial.

b In the Description field, type Tutorial demonstrating JBuilder's visual 
design features.

c In the @author field, type your name. 

You may leave the other fields blank.

This information is saved in the project HTML file. It’s also used for 
Javadoc comments when you use the Generate Header Comments 
option offered in some of JBuilder’s wizards, such as the Application 
and Class wizards.

8 Accept the other defaults on this page.

9 Press Finish to create the project. 

A project file and a project HTML file are added to the project and their 
nodes appear in the project pane.

See also

• “Managing paths” in Building Applications with JBuilder.

• “Creating and managing projects” in Building Applications with JBuilder.

Selecting the project’s code style options

Now let’s adjust the code style options. These options control how 
JBuilder writes event handler stubs and instantiation code. Event 
handling and instantiation are discussed in more detail later in this 
tutorial.

To change the code style options,

1 Right-click TextEditor.jpx in the project pane (upper left).

2 Choose Properties from the menu that appears. 

The Project Properties dialog box appears.

3 Click the Formatting tab in the Project Properties dialog box.

4 Click the Generated tab in the Formatting page. 

Here, we choose which style event handler to generate. JBuilder can use 
either anonymous inner classes or separate adapter classes. In this 
tutorial, we use separate adapter classes.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-5

S t e p  1 :  S e t t i n g  u p

5 Look under Event Handling.

6 Select the Standard Adapter option.

Note Regardless of which style event handler method you use, the code you 
put inside the method will be the same.

7 Deselect the Match Existing Code option. This helps make the code in 
this tutorial a little more predictable. 

JBuilder gives you the option of instantiating objects using 
Beans.instantiate() instead of the keyword new. This tutorial uses new.

8 Make sure that the Use Beans.instantiate(...) option is not selected. 

Your Generated page should now look like the image below. The 
options we’re interested in are circled:

9 Click OK to close the Project Properties dialog.

See also

• “Choosing event handler style” on page 4-6.

Using the Application wizard

Now that we have a project, we need to populate it with visually 
designable files. Let’s add the application files to the project.

1 Choose File|New to open the object gallery.



9-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 :  S e t t i n g  u p

2 Select the General tab.

3 Double-click the Application icon to open the Application wizard.

4 Change the application class name in Step 1:

• Class name: TextEditClass

Accept the default package name.

5 Click Next to go to Step 2 of the Application wizard.

6 Change the name and title of the frame class:

• Class: TextEditFrame

• Title: Text Editor

7 Check all the options on Step 2. The wizard automatically generates 
code for the selected options. 

Notice what each option is as you check it off, so you know what to 
expect for generated code.

8 Click Next to go to Step 3, where JBuilder creates a default runtime 
configuration. 

Make sure this option is checked and accept the default name for the 
configuration. 

There are no base configurations available for this project because it’s a 
new project.

9 Click the Finish button. 

Notice the .java and image files added to the project by the Application 
wizard.

Note In JBuilder SE and Enterprise editions, an automatic source package 
node also appears in the project pane if the Automatic Source Packages 
option is enabled on the General page of the Project Properties dialog 
box (Project|Project Properties).

10 Save the project using File|Save Project “TextEditor.jpx”.

Click the Design tab for the open file, TextEditFrame.java. The Design tab, 
located at the bottom of the AppBrowser window, opens the UI designer. 
Notice the changes in JBuilder’s IDE:

• The UI designer is active in the content pane.

• The component tree appears in the structure pane, with this selected as 
the active component.

• The design surface appears in the content pane.

• The Inspector appears to the right of the design surface.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-7

S t e p  1 :  S e t t i n g  u p

Figure 9.1 JBuilder in design view

Tip You can see which component your pointer is on on the design surface by 
looking in the status bar. This is helpful when you have a more complex 
UI design.

Tip If the design area is too narrow to see the entire UI in the AppBrowser, 
adjust the size of the AppBrowser panes either by dragging their borders 
with the mouse or by selecting Window|Select Browser Splitter, selecting 
the splitter bar you want to move, and using your arrow keys.

Suppressing automatic hiding of JFrame

By default, a JFrame will hide when you click its close box. This is not the 
behavior we want for this tutorial, because the Application wizard added 
an event handler to call System.exit(0) when the close button is pressed. 
Later we will be adding code in this handler to ask the user about saving 
the file on exit, and we do not want the window to automatically hide if 
the user says no.

To change the default behavior,

1 Select this in the component tree.

2 Click the Properties tab in the Inspector.



9-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 :  S e t t i n g  u p

3 Select the defaultCloseOperation property value, HIDE_ON_CLOSE.

4 Choose DO_NOTHING_ON_CLOSE from the property’s drop-down 
list.

Setting the look and feel

If you have changed the JBuilder look and feel from its default, then set up 
JBuilder so the designer will use the Metal Look & Feel. We’ll use Metal 
for this tutorial because it looks pretty much the same across all supported 
platforms.

You can set the look and feel on the designer context menu or in the 
JBuilder IDE Options dialog box, but this doesn’t have any effect on how 
your UI will look at runtime. To force a particular runtime look and feel, 
you have to set the look and feel explicitly in the main() method of the class 
that runs the application. In this case, the main() method is in 
TextEditClass.java.

By default, the Application wizard generates the following line of code in 
the main() method of the runnable class:

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

This means the runtime look and feel will be whatever the hosting system 
is using.

To specify Metal, do the following:

1 Double-click TextEditClass.java in the project pane to open the file in 
the editor.

2 Click main(String[] args) in the structure pane at the bottom left, or 
scroll down in the content pane until you find public static void 
main(String[] args){.

3 Highlight the setLookAndFeel() line of code and copy it to the line just 
below it.

4 Comment out the first version of this line of code with two forward 
slashes:

// UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

5 Change the argument of the new version to specify Metal Look And 
Feel:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

6 Choose File|Save All to save the project and its files, then proceed to 
the next step. 

It’s a good idea to save frequently during this tutorial, for example, at 
the end of each step.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-9

S t e p  2 :  A d d i n g  a  t e x t  a r e a

See also

• “Changing look and feel” on page 5-9.

Step 2: Adding a text area
In this step, you’ll make a text area completely fill the UI frame between 
the menu bar at the top and the status bar at the bottom. To support this, 
the layout manager for the main UI container needs to use BorderLayout.

A BorderLayout container is divided into five areas: North, South, East, 
West, and Center. Each area can hold only one component, for a 
maximum of five components in the container. For this purpose, a panel 
containing multiple components is considered as one component. A North 
component clings to the top of the container, an East component to the left 
side, and so on. A component placed into the Center area completely fills 
the container space not occupied by any other areas containing 
components.

See also

• “BorderLayout” on page 8-15.

The Application wizard creates a JFrame component that’s the main 
container for this UI. This JFrame component is the this component. this 
contains a JPanel object called contentPane which already uses BorderLayout. 
All you need to do now is add the components for the text area to the 
contentPane.

To do so, you’ll add a scroll pane and then put a text area component 
inside it. The scroll pane provides the text area with scroll bars.

1 Select the TextEditFrame tab at the top of the editor.

2 Click the Design tab, if it’s not already selected.

3 Click the contentPane component in the component tree to select it.



9-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  2 :  A d d i n g  a  t e x t  a r e a

4 Click the Swing Containers tab on the component palette and select the 
JScrollPane component.

5 Click the center of the contentPane in the UI designer. 

This drops the JScrollPane component into the contentPane panel and 
should give it a constraint of Center. 

In this case, the toolbar occupies the North area (top), and the status bar 
occupies the South (bottom). Since no components are assigned to East 
and West, the scroll pane component occupies the Center area and 
expands to the left (West) and right (East) edges of the container. 

If you miss, choose Edit|Undo and try again.

6 Select the new jScrollPane1 component in the component tree.

7 Look at its constraints property value in the Inspector and verify that it 
is set to Center. If not, select Center from the property’s drop-down list.

Let’s add the text area, using a different way of adding components to the 
design. We’ll use the Add Component dialog box.

1 Choose Edit|Add Component. 

This brings up the Add Component dialog box.

2 On the Component Palette page, select Swing in the Pages area.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-11

S t e p  2 :  A d d i n g  a  t e x t  a r e a

3 Select javax.swing.JTextArea in the Components area:

4 Click OK to close the dialog box. 

The new component is added to this.

5 Choose Edit|Cut with the new component selected.

6 Select jScrollPane1. 

When you paste the text area component back in, this will be its parent.

7 Choose Edit|Paste. 

The jTextArea1 component appears below jScrollPane1 in the 
component tree, and is nested inside it on the design surface. 

There is default text inside the text pane. Let’s take it away.

8 Right-click the text property in the Inspector and choose Clear Property 
Setting.

Finally, you need to set some properties of jTextArea1 so it will wrap lines 
of text automatically and at word boundaries.

Tip The Inspector lists properties in alphabetical order.



9-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  2 :  A d d i n g  a  t e x t  a r e a

In the Inspector, set these values for the following properties:

1 background = white

2 lineWrap = true

3 wrapStyleWord = true

Now, compile your program then run it to see how it looks.

1 Choose Project|Make Project from the menu. 

This compiles all the files in the project. It generates a 
TextEditClass.class file and a TextEditFrame.class in the classes directory 
in the project directory. It should compile without any errors.

2 Click the Run button on the JBuilder toolbar, press F9, or choose Run|
Run Project from the menu bar.

Your runtime UI should now look like this:

Notice that there are no scroll bars. This is because the 
horizontalScrollBarPolicy and verticalScrollBarPolicy properties for 
jScrollPane1 are set to AS_NEEDED by default. If you want scroll bars to be 
visible all the time, you would need to change these property values to 
ALWAYS. We’ll leave these properties as they are.

1 Choose File|Exit in the “Text Editor” application to close the runtime 
window.

2 To close the message pane, click the close button in the corner of the 
message tab:



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-13

S t e p  3 :  C r e a t i n g  t h e  m e n u s

Step 3: Creating the menus
In this step, you are going to create the following menus:

JBuilder Personal users,
your tutorial omits the
Edit|Font menu item.

You use the Menu designer to create and edit menus. We’ll create new 
menu items, add a new menu, and insert a separator bar.

There are different ways to access these commands. This tutorial 
demonstrates many of them. Once you find a mode of command access 
you like, you may choose which mode to use in subsequent, similar 
commands.

1 Click the Design tab on TextEditFrame.java, if it’s not already selected.

2 Open the Menu designer. Either double-click jMenuFileExit in the Menu 
folder in the component tree, or select it and press Enter. 

This switches the design surface to the Menu designer, with 
jMenuFileExit selected.

3 Insert a menu item using the Menu designer toolbar:

a Click the Insert Menu Item button on the menu designer toolbar.

b Type New directly in the new menu item location.

c Press Enter to accept the new entry.

4 Insert a menu item using the Menu designer context menu:

a Select the File menu item on the design surface. 

The File menu expands.

b Right-click the Exit menu item. 

This displays a menu with all the Menu designer commands.

c Choose Insert Menu Item from the Menu designer context menu.

d In the Inspector’s Properties page, select the text field.

e Type Open.

f Press Enter to accept the new entry and move down one line.

5 Insert two more menu items. Choose one of the above techniques to 
create the following menu items:

a Save

b Save As



9-14 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  3 :  C r e a t i n g  t h e  m e n u s

6 Now, insert a bar between the Exit and Save As menu items:

a Select the Exit menu item.

b Click the Insert Separator toolbar button. 

The File menu is now complete. Let’s create a new menu, the Edit menu.

1 Right-click the Help item on the main menu bar and choose Insert 
Menu. 

This creates a new menu between the File and Help menus.

2 Type Edit as the name for this menu.

3 Press Enter to move down to the next blank entry. You don’t need to 
press Insert here because there are no menu items on this menu after the 
current entry.

Note There’s always a blank line at the bottom of a menu in the Menu 
designer. It’s not a menu item, it’s just a placeholder that JBuilder uses. 
You still need to use Insert Menu Item so that the new menu item is 
added above the placeholder.

Tip To delete an entry, select it and click the Delete toolbar button, or press 
the Delete key twice. The first press of the Delete key clears the text in the 
entry. The second press removes the entry from the menu.

4 Continue to build the Edit menu. Use your favorite technique for 
adding menu items. Add three items:

a Font (JBuilder SE and Enterprise)

b Foreground Color

c Background Color

If an entry is too wide for the edit area, the text automatically scrolls as 
you type. When you press Enter, the Menu designer adjusts the width of 
the menu to accommodate the longest item in the list.

5 Close the Menu designer by double-clicking any component in the UI 
folder of the component tree. 

This switches the view in the content pane back to the UI designer.

6 Save the file, then run the application.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-15

S t e p  4 :  A d d i n g  a  F o n t C h o o s e r  d i a l o g

Your UI should now look like this at runtime:

You should be able to play with the UI and type text in the text area, but 
the buttons won’t do anything yet and only the File|Exit and Help|About 
menus will work.

You’ve created and populated the menus this UI requires. Now let’s start 
to make them functional.

See also

• “Creating menus” on page 6-4.

Step 4: Adding a FontChooser dialog
JBuilder Personal users,

skip Step 4 and 5. Go
directly to Step 6. Ignore
any directions in the rest
of this tutorial pertaining

to the Edit|Font menu
item or the FontChooser

dialog.

Let’s begin hooking up the menu events, starting with the Edit|Font 
menu item. Once in place, this is going to bring up a FontChooser dialog.

Let’s add a FontChooser dialog to TextEditFrame.java for the Font menu item 
to use:

1 Open TextEditFrame.java in the designer.

2 Choose Edit|Add Component. 

The Select Component dialog box appears.

3 In the Pages field, select More dbSwing. Click the Component Palette 
tab if it’s not already open.

4 Select the com.borland.dbswing.FontChooser component from the 
Components field.

5 Click OK to add the font chooser to the design. It will appear as 
fontChooser1 in the Default folder in the component tree.

You will only see the font chooser dialog component in the component 
tree, not in the UI designer.



9-16 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  4 :  A d d i n g  a  F o n t C h o o s e r  d i a l o g

Setting the dialog’s frame and title properties

You need to set the frame property on this dialog component for it to work 
properly at runtime. The frame property must reference a java.awt.Frame, or 
descendant, before being shown. In this case, the frame you need to 
reference is ‘this’ frame (TextEditFrame). If you fail to do this, the dialog will 
not show, and an error message occurs at runtime. You can also set the 
title property so the dialog will have an appropriate caption.

To set the frame and title properties,

1 Select fontChooser1 in the Default folder of the component tree.

2 Click the frame property value in the Inspector.

3 Select this from the drop-down list of values.

4 Click the title property value.

5 Type the word Font as its value.

6 Press Enter.

As a result of this, the following lines are added to the source code in the 
jbInit() method:

fontChooser1.setFrame(this);
fontChooser1.setTitle("Font");

Placing the FontChooser into the component tree and setting these 
properties creates code in your class that instantiates a FontChooser dialog 
for your class, sets its title to “Font”, and sets its frame property to this. 
But this code won’t display the dialog or make use of it in any way. The 
dialog has to be hooked up to the menu item first. That’s done in the event 
handler for the Edit|Font menu item. Let’s create that code now.

Creating an event to launch the FontChooser

Create an event for the Edit|Font menu item that will launch the 
FontChooser:

1 Select the Edit|Font menu item in the component tree. You can do this 
by choosing Edit|Font on the design surface. In the component tree, 
this component’s name should be jMenuItem5 and it should be under the 
second menu node, jMenu1.

Tip Don’t worry if your Font menu item component has a different name. 
Just make sure you select the component for the Font menu item. The 
text property for this menu item in the Inspector says “Font”.

2 Click the Events tab in the Inspector. 

It displays an alphabetized list of all supported events for the selected 
component.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-17

S t e p  4 :  A d d i n g  a  F o n t C h o o s e r  d i a l o g

3 Click the value field (in the second column) for the actionPerformed 
event.

For menus, buttons, and many other Java UI components, 
actionPerformed is the main user event of interest, the one you should 
hook for responding to the user’s interaction with that menu or button.

The name of the event handling method appears in the value field. If 
the method doesn’t already exist, this will show the proposed default 
name for a new event handling method. For this new event handler, the 
suggested name is jMenuItem5_actionPerformed.

4 Double-click this event value, or press Enter to create the new event. 

When an event handling method is new, double-clicking it in the 
Inspector generates an empty stub for the method in your source code. 

Regardless of whether the method is new or already exists, the window 
focus will switch to the source code in the editor and position your 
cursor inside the event handling method. 

For a new event handling method, as is the case here, you will see that 
there is no code yet in the body of the method.

5 Type the following line of code inside the body of this new empty 
method between the open and close curly braces:

fontChooser1.showDialog();

Your method should now look like this:

void jMenuItem5_actionPerformed(ActionEvent e) {
    fontChooser1.showDialog();
  }

Tip To increase viewing area in the content pane, either move the splitters 
at the borders using your mouse or select Window|Select Splitter|
Project/Content and use your arrow keys to move the splitter.

6 Now save and run your application. The Edit|Font menu item should 
open a FontChooser dialog. If not, check that you set its frame property to 
this.

7 Close the “Text Editor” application and close the JBuilder message pane.

Nothing happens yet when you try to change the font. This is because the 
application isn’t using the results from the FontChooser to change the text in 
the text area. Let’s make it do that next.



9-18 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  5 :  A t t a c h i n g  a  m e n u  i t e m  e v e n t  t o  t h e  F o n t C h o o s e r

Step 5: Attaching a menu item event to the FontChooser
JBuilder Personal users,
skip this step and go to

Step 6. Ignore any
directions in the rest of

this tutorial pertaining to
the Edit|Font menu item
or FontChooser dialog.

In this step, we hook the FontChooser dialog to the text area component, 
making it possible for the text area to use the font chooser.

1 Click the Source tab and go to the Font menu item event handling 
method (jMenuItem5_actionPerformed(ActionEvent e))) that you just 
created, if you’re not there already.

Tip To quickly locate this method in the source code, click the following 
node in the structure pane (bottom left of the AppBrowser). Note that 
the order of the elements in your structure pane might not appear 
exactly as they do here; the order depends on the setting of the 
Structure Order options on the Java Structure page of the Structure 
View Properties dialog box.

2 Insert the following code into your Font menu item (jMenuItem5) event 
handling method between the opening and closing curly braces, being 
sure to replace the old fontChooser1.showDialog(); code:

  // Handling the "Edit Font" menu item

  // Pick up the existing font from the text area and put it into the FontChooser 
  // before showing the FontChooser, so that we are editing the current font.
  fontChooser1.setSelectedFont(jTextArea1.getFont());

  // Test the return value of showDialog() to see if the user pressed OK.
  // Obtain the new Font from the FontChooser.
  if (fontChooser1.showDialog()) {
  
    // Set the font of jTextArea1 to the font
    // the user selected before pressing the OK button.
    jTextArea1.setFont(fontChooser1.getSelectedFont());
  }



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-19

S t e p  5 :  A t t a c h i n g  a  m e n u  i t e m  e v e n t  t o  t h e  F o n t C h o o s e r

The entire method should now look like this:

void jMenuItem5_actionPerformed(ActionEvent e) {
  // Handling the "Edit Font" menu item

  // Pick up the existing font from the text area and put it 
  // into the FontChooser before showing the FontChooser, 
  // so that we are editing the current font.
  fontChooser1.setSelectedFont(jTextArea1.getFont());

  // Test the return value of showDialog() to see if the user 
  // pressed OK. Obtain the new Font from the FontChooser.
  if (fontChooser1.showDialog()) {
  
    // Set the font of jTextArea1 to the font
    // the user selected before pressing the OK button.
    jTextArea1.setFont(fontChooser1.getSelectedFont());
  }
}

Tip To save typing, you can copy and paste the code example above from 
the Help Viewer to your source code by doing the following:

a Select the code to copy in the Help Viewer. In this example, highlight 
the entire event handling method. Be sure to check your curly 
braces, so you wind up with the right number.

b Choose Edit|Copy on the Help Viewer menu or use your 
keymapping’s keystroke shortcut.

c Click the Source tab to switch to the editor in the AppBrowser.

d Highlight the code you want to replace. In this example, highlight 
the entire event handling method in your source code.

Warning Be careful where you paste. Don’t remove an important curly brace, 
such as the closing one for the class definition.

e Choose Edit|Paste from the JBuilder main menu or use the 
appropriate keyboard shortcut.

f Check the indenting level of the inserted code and adjust to match 
your code. Indent a block by selecting the text and pressing the Tab 
key.

3 Save and run the application and type some text in the text area.

4 Select the text and use the Edit|Font menu item to change the text’s font.

5 Close the “Text Editor” application and close the JBuilder message pane.

This application changes the font for the entire text area, not just selected 
text. It doesn’t persist the new font settings, so when you close and reopen 
the application, the default font is used again. We aren’t going to enter 
code to enable these features in this tutorial, but you could do that as an 
independent exercise after you complete the tutorial.



9-20 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  6 :  A t t a c h i n g  m e n u  i t e m  e v e n t s  t o  J C o l o r C h o o s e r

Step 6: Attaching menu item events to JColorChooser
Now let’s create Edit|Foreground Color and Edit|Background Color 
menu events and connect them to a javax.swing.JColorChooser dialog.

Since you don’t need to change any of the properties for JColorChooser in 
this application, there’s no need to add the component to the UI codebase. 
You can just call it directly from a menu item’s actionPerformed() event 
handler as follows:

1 Switch back to the Menu designer for TextEditFrame.java.

2 Select the second menu item in the component tree under Edit 
(jMenuItem6) which has “Foreground Color” in its actionCommand property 
on the Properties page of the Inspector.

3 Click the Events tab in the Inspector and double-click the 
actionPerformed() event to create the following event handler:

void jMenuItem6_actionPerformed(ActionEvent e) {
}

4 Insert the following code into the stub of the event handler (including 
comments if you wish):

// Handle the "Foreground Color" menu item
Color color = JColorChooser.showDialog(this,"Foreground Color",
    jTextArea1.getForeground());
if (color != null) {
  jTextArea1.setForeground(color);
}

5 Switch back to the Menu designer.

6 Select the third menu item in the component tree under Edit 
(jMenuItem7), which should have “Background Color” in its 
actionCommand property. Create an actionPerformed() event for it as you 
did for jMenuItem6.

7 Insert the following code into the actionPerformed() event for jMenuItem7:

// Handle the "Background Color" menu item
Color color = JColorChooser.showDialog(this,"Background Color",
    jTextArea1.getBackground());
if (color != null) {
  jTextArea1.setBackground(color);
}

8 Save your file, then compile and run your application. 



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-21

S t e p  7 :  A d d i n g  a  m e n u  e v e n t  h a n d l e r  t o  c l e a r  t h e  t e x t  a r e a

Type in text and play around with the foreground and background 
colors. Here is what it looks like if you set the foreground to white and 
the background to black:

9 Close the “Text Editor” application and close the JBuilder message 
pane.

Step 7: Adding a menu event handler to clear the text area
Let’s hook up the File|New menu item to an event handler that clears the 
old text out of the text area when you open a new file.

1 Switch back to the Menu designer.

2 Select the File|New menu item in the component tree (probably 
jMenuItem1).

3 Create an actionPerformed() method, as you now know how to do.

4 Insert the following code into it:

  // Handle the File|New menu item.
  // Clears the text of the text area.
  jTextArea1.setText("");

5 Save and run the application, type something into the text area, then 
see what happens when you choose File|New. It should erase the 
contents. 

Notice that it doesn’t ask you if you want to save your file first. To 
handle that, you need to set up infrastructure for reading and writing 
text files, for tracking whether the file has changed and needs saving, 
and so on. Let’s begin the file support in the next step.

6 Close the “Text Editor” application and close the JBuilder message 
pane.



9-22 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  8 :  A d d i n g  a  f i l e  c h o o s e r  d i a l o g

Step 8: Adding a file chooser dialog
Let’s hook up the File|Open menu item to an event handler that presents 
the user with a JFileChooser (file open dialog) for text files. If the user 
selects a file and clicks the OK button, then the event handler opens that 
text file and puts the text into the JTextArea.

1 Switch back to the designer and select the JFileChooser component from 
the Swing Containers page of the palette.

2 Click the UI folder in the component tree to drop the component into 
the UI designer. (If you click on the design surface, the component will 
be dropped into the wrong section of the tree.)

3 Select the File|Open menu item in the component tree (probably 
jMenuItem2).

4 Create an actionPerformed() event and insert the following code:

//Handle the File|Open menu item.
// Use the OPEN version of the dialog, test return for Approve/Cancel
if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {

 // Display the name of the opened directory+file in the statusBar.
 statusBar.setText("Opened "+jFileChooser1.getSelectedFile().getPath());

 // Code will need to go here to actually load text
 // from file into TextArea.
}

5 Save and run the application.

6 Using the File|Open menu, select a file and click OK. 

You should see the complete directory and file name displayed in the 
status line at the bottom of the window. However, no text appears in 
the text area. We’ll take care of that in the next step.

7 Close the “Text Editor” application before continuing.

Internationalizing Swing components

JBuilder Personal users
skip this step and go to

Step 9.

Imagine that we’re localizing this application to run in several languages. 
This means we need to add a line of code so the Swing components, 
JFileChooser and JColorChooser, will appear in the language which the user 
runs the application in.

1 Add the following line of code to the TextEditFrame class in 
TextEditFrame.java:

  IntlSwingSupport intlSwingSupport1 = new IntlSwingSupport();



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-23

S t e p  9 :  A d d i n g  c o d e  t o  r e a d  t e x t  f r o m  a  f i l e

Your code now looks like this:

public class TextEditFrame extends JFrame {
  IntlSwingSupport intlSwingSupport1 = new IntlSwingSupport();
  JPanel contentPane;
  JMenuBar menuBar1 = new JMenuBar();
  JMenu menuFile = new JMenu();
  ...
}

Note In this tutorial, the import statement import com.borland.dbswing.*; was 
added automatically when you added the dbSwing FontChooser 
component. In other situations, you could compile the file then use 
Optimize Imports to add the necessary import statements 
automatically. 

Now, when you run your application in other languages, the 
JFileChooser and JColorChooser will appear in the appropriate language.

2 Save the application.

See also

• “Internationalizing programs with JBuilder” in Building Applications 
with JBuilder.

• “Adding and configuring libraries” in Building Applications with 
JBuilder.

• “Optimize Imports” in Building Applications with JBuilder.

Step 9: Adding code to read text from a file
In this step, we’ll add the code that actually reads text from the 
user-selected file into the JTextArea. This involves adding a method to 
TextEditFrame.java and adjusting the event handler that calls the method.

First, add a new method to your class to perform the actual open file 
operation. We’ll call this method openFile().

1 Switch to the editor in TextEditFrame.java.

2 Add the following import to the list of imports at the top of the file:

import java.io.*;



9-24 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  9 :  A d d i n g  c o d e  t o  r e a d  t e x t  f r o m  a  f i l e

3 Insert the following openFile() method. 

You can put this method anywhere in your class (outside of other 
methods). A good place for it is just after the code for the jbInit() 
method, just before the jMenuFileExit_actionPerformed() event.

// Open named file; read text from file into jTextArea1; report to 
statusBar.
void openFile(String fileName) {
  try {
    // Open a file of the given name.
    File file = new File(fileName);

    // Get the size of the opened file.
    int size = (int)file.length();

    // Set to zero a counter for counting the number of
    // characters that have been read from the file.
    int chars_read = 0;

    // Create an input reader based on the file, so we can read its data.
    // FileReader handles international character encoding conversions.
    FileReader in = new FileReader(file);

    // Create a character array of the size of the file,
    // to use as a data buffer, into which we will read
    // the text data.
    char[] data = new char[size];

    // Read all available characters into the buffer.
    while(in.ready()) {
      // Increment the count for each character read,
      // and accumulate them in the data buffer.
      chars_read += in.read(data, chars_read, size - chars_read);
    }

    in.close();

    // Create a temporary string containing the data,
    // and set the string into the JTextArea.
    jTextArea1.setText(new String(data, 0, chars_read));

    // Display the name of the opened directory+file in the statusBar.
    statusBar.setText("Opened "+fileName);
  }

  catch (IOException e) {
    statusBar.setText("Error opening "+fileName);
  }
}



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-25

S t e p  1 0 :  A d d i n g  c o d e  t o  m e n u  i t e m s  f o r  s a v i n g  a  f i l e

4 Click the File|Open event handler in the structure pane to locate it in 
the source code. Its name will be 
jMenuItem2_actionPerformed(ActionEvent) if the File|Open menu item 
component name is jMenuItem2.

5 Replace the code in the File|Open event handler if() statement that 
previously said:

// Display the name of the opened directory+file in the statusBar.
statusBar.setText("Opened "+jFileChooser1.getSelectedFile().getPath());

// Code will need to go here to actually load text
// from file into JTextArea.

with this new openFile() method instead, using the concatenated 
directory and file name:

// Call openFile to attempt to load the text from file into JTextArea
openFile(jFileChooser1.getSelectedFile().getPath());
//repaints menu after item is selected
this.repaint();

6 Save and run your program and open tester.txt in your editor. 

The correct text file should appear in the text editor:

7 Close the “Text Editor” application and close the JBuilder message 
pane.

Step 10: Adding code to menu items for saving a file
We need code that writes the file back out to disk when File|Save and 
File|Save As are used. The program needs to know whether the file being 
saved is a new file or whether an existing file has been modified. When a 
file has been modified since the last save, it’s called a dirty file.



9-26 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 0 :  A d d i n g  c o d e  t o  m e n u  i t e m s  f o r  s a v i n g  a  f i l e

We’ll add a String instance variable to hold the name of the file that was 
opened and add methods for checking if the file is dirty and writing the 
text back out.

1 Click jFileChooser1 in the structure pane. This will take you to the last 
entry in the list of instance variable declarations (since jFileChooser1 
was the last declaration made).

2 Add the following declarations to the end of the list after jFileChooser1:

String currFileName = null;  // Full path and filename.
                             // null means new/untitled.
boolean dirty = false;  // false means the file was not modified initially.

3 Click the openFile(String fileName) method in the structure pane to 
quickly locate it in the source code. Place the cursor in that method after 
the following line that reads the file into the JTextArea:

jTextArea1.setText(new String(data, 0, chars_read));

4 Insert the following code there:

// Cache the currently opened filename for use at save time...
this.currFileName = fileName;
// ...and mark the edit session as being clean
this.dirty = false;

5 Create the following saveFile() method that you can call from the File|
Save event handler. You can place it just after the openFile() method 
block. This method also writes the file name to the status bar upon 
saving.

// Save current file; handle not yet having a filename; report to statusBar.
boolean saveFile() {
  
  // Handle the case where we don't have a file name yet.
  if (currFileName == null) {
    return saveAsFile();
  }

  try {
    // Open a file of the current name.
    File file = new File (currFileName);

    // Create an output writer that will write to that file.
    // FileWriter handles international characters encoding conversions.
    FileWriter out = new FileWriter(file);
    String text = jTextArea1.getText();
    out.write(text);
    out.close();
    this.dirty = false;
    
    // Display the name of the saved directory+file in the statusBar.
    statusBar.setText("Saved to " + currFileName); 
    return true;
  }



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-27

S t e p  1 0 :  A d d i n g  c o d e  t o  m e n u  i t e m s  f o r  s a v i n g  a  f i l e

  catch (IOException e) {
    statusBar.setText("Error saving "+ currFileName);
  }
  return false;
}

After you’ve created the above code, you’ll see an error message in the 
structure pane: “Method saveAsFile() not found in class 
texteditor.TextEditFrame.” We’ll take care of that now.

6 Create the following saveAsFile() method. It’s called from saveFile() 
when a new file is saved. It will also be used from the File|Save As 
menu item, which we’ll handle later. Put the following code right after 
the saveFile() method block:

// Save current file, asking user for new destination name.
// Report to statusBar.
boolean saveAsFile() {
  // Use the SAVE version of the dialog, test return for Approve/Cancel
  if (JFileChooser.APPROVE_OPTION == jFileChooser1.showSaveDialog(this)) {
    // Set the current file name to the user's selection,
    // then do a regular saveFile
    currFileName = jFileChooser1.getSelectedFile().getPath();
    //repaints menu after item is selected
    this.repaint();
    return saveFile();
  }
  else {
    this.repaint();
    return false;
  }
}

7 Switch back to the Menu designer and create an actionPerformed() event 
handler for the File|Save menu item ( probably jMenuItem3). Insert the 
following code:

//Handle the File|Save menu item.
saveFile();

8 Create an actionPerformed() event handler for the File|Save As menu 
item (jMenuItem4) and insert the following code:

//Handle the File|Save As menu item.
saveAsFile();

9 Save, compile, and run the program.

10 Use the application to open tester.txt, make changes in the file, and 
save the changes. Make more changes and save tester.txt as 
tester_1.txt.

11 Close the “Text Editor” application and close the JBuilder message 
pane.



9-28 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 1 :  A d d i n g  c o d e  t o  t e s t  i f  a  f i l e  h a s  b e e n  m o d i f i e d

Step 11: Adding code to test if a file has been modified
The program needs to keep track of whether a file has been modified since 
being created, opened, or saved, so the program can appropriately prompt 
the user when the file should be saved before closing the file or exiting the 
program. To do this, we’ll add the boolean variable called dirty, which 
we’ve already referred to in previous code.

1 Click the following File|New event-handling method in the structure 
pane: jMenuItem1_actionPerformed(ActionEvent e)

2 Add the following code to the end of this method to clear the dirty and 
currFileName variables. Place it immediately after the line 
jTextArea1.setText(""); and before the closing curly brace.

// Clear the current filename and reset the file to clean.
currFileName = null;
dirty = false;

You’ll use the JOptionPane dialog to display a confirmation message box 
to find out from the user whether to save a dirty file before abandoning 
it when doing a File|Open, File|New, or File|Exit. This dialog is 
invoked by calling a class method in JOptionPane, so you don’t need to 
add a JOptionPane component to your program.

3 Add the following okToAbandon() method to the source code. You can 
put this new method right after the saveAsFile() method block:

// Check if file is dirty.
// If so, prompt for save/don't save/cancel save decision.
boolean okToAbandon() {
  int value =  JOptionPane.showConfirmDialog(this, "Save changes?", 
      "Text Edit", JOptionPane.YES_NO_CANCEL_OPTION) ;

  switch (value) {
     case JOptionPane.YES_OPTION:
       // Yes, please save changes
       return saveFile();
     case JOptionPane.NO_OPTION:
       // No, abandon edits; that is, return true without saving
       return true;
     case JOptionPane.CANCEL_OPTION:
     default:
       // Cancel the dialog without saving or closing
       return false;
  }
}

This method is not yet complete, but we’ll finish it later. 

This method will be called whenever the user chooses File|New, File|
Open, or File|Exit. Its purpose is to test to see if the text needs to be 
saved. If it is dirty, this method uses a yes/no/cancel message dialog to 
ask the user whether to save the file. 



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-29

S t e p  1 1 :  A d d i n g  c o d e  t o  t e s t  i f  a  f i l e  h a s  b e e n  m o d i f i e d

This method also calls saveFile() if the user clicks the Yes button. When 
the method returns the boolean value true, it indicates it is OK to 
abandon this file because it was clean or the user clicked the Yes or No 
button. If the return value is false, it means the user clicked Cancel. The 
code that will actually check to see if the file has changed will be added 
in a later step. 

For now, this method always treats the file as dirty, even if no change 
has been made to the text. Later you will add a method to set the dirty 
variable to true when the user types in the text area, and you will add 
code to the top of okToAbandon() to test the dirty variable.

4 Place calls to this okToAbandon() method at the top of your File|New and 
File|Open event handlers, as well as in the wizard-generated File|Exit 
event handler. In each case, test the value returned by okToAbandon() and 
only perform the operation if the value returned is true. 

Tip To find these event handlers quickly, click them in the structure pane. 
You can also search in the structure pane by moving focus to the 
structure pane and typing. 

The following are the modified event handlers:

• For File|New, put a new if statement in the method body so that 
code will only be executed if okToAbandon() returns true. The modified 
method should now look like this:

void jMenuItem1_actionPerformed(ActionEvent e) {
  // Handle the File|New menu item.
  if (okToAbandon()) {
     // clears the text of the TextArea
     jTextArea1.setText("");
    // clear the current filename and set the file as clean:
    currFileName = null;
    dirty = false;
  }
}

• For File|Open, put an if statement in the method for when 
okToAbandon() returns true, and add code to return right away from 
the method if okToAbandon() returns false. 

The modified method should now look like this:

void jMenuItem2_actionPerformed(ActionEvent e) {
  //Handle the File|Open menu item.
  if (!okToAbandon()) {
    return;
  }
  // Use the OPEN version of the dialog, test return for Approve/Cancel
  if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) 
{
    // Call openFile to attempt to load the text from file into TextArea
    openFile(jFileChooser1.getSelectedFile().getPath());
  }



9-30 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 2 :  A c t i v a t i n g  t h e  t o o l b a r  b u t t o n s

  this.repaint();
}

• For File|Exit, put a test for okToAbandon() around the line of code that 
exits the application. The modified method should now look like 
this:

//File | Exit action performed
public void jMenuFileExit_actionPerformed(ActionEvent e) {
  if (okToAbandon()) {
    System.exit(0);
  }
}

Each of these menu event handling methods now does its task if 
okToAbandon() returns true.

5 Save and run the program and try opening, editing, and saving 
tester.txt and tester_1.txt. 

Remember that okToAbandon() isn’t completed yet. Right now, it always 
acts like the file is dirty. The result is that, for now, the confirmation 
message box always comes up when you choose File|New, File|Open, 
or File|Exit, even if the text hasn’t been changed. If the file hasn’t been 
changed, click Cancel to close the dialog and continue executing the 
command.

6 Close the “Text Editor” application and close the JBuilder message 
pane.

Step 12: Activating the toolbar buttons
When we generated files with the Application wizard, we checked the 
Generate Toolbar option. This made JBuilder generate code for a JToolBar 
and populate it with three JButton components that already display icons. 
All we have to do is specify the text for each button’s label and tool tip and 
create an actionPerformed() event for each button to call an appropriate 
event-handling method.

Specifying button tool tip text

To specify tool tips for the buttons,

1 Switch to the UI designer.

2 Select jButton1 under jToolBar in the component tree.

3 Click the Properties tab in the Inspector.

4 Click the toolTipText property to highlight its entry.

5 Type Open File, if it doesn’t already say that, and press Enter.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-31

S t e p  1 2 :  A c t i v a t i n g  t h e  t o o l b a r  b u t t o n s

6 Repeat this process for jButton2 and jButton3, using the following text:

• Type Save File for jButton2.

• Type About for jButton3.

Creating the button events

Up until now, we have created event handlers using the Inspector. Let’s 
use a shortcut to create the button events.

Many components define a default event in their BeanInfo class. For 
example, a button defines actionPerformed() as its default event. To 
generate an event handler quickly for this default event, double-click the 
component in the design surface.

Using this shortcut, create events for the buttons as follows:

1 Double-click jButton1 on the design surface. This switches to the editor 
and places your cursor inside the new 
jButton1_actionPerformed(ActionEvent e) event for the Open button.

2 Enter the following code to call the fileOpen() method:

//Handle toolbar Open button
fileOpen();

3 Create a jButton2_actionPerformed(ActionEvent e) event for jButton2 and 
call saveFile() from it:

//Handle toolbar Save button
saveFile();

4 Create a jButton3_actionPerformed(ActionEvent e) event for jButton3, and 
call helpAbout() from it:

//Handle toolbar About button
  helpAbout();

Notice that the code in the jButton1 and jButton3 event-handlers make calls 
to methods which don’t exist yet: fileOpen() and helpAbout(). Let’s create 
those methods now.

Creating a fileOpen() method

The fileOpen() method performs the operations that are currently in your 
File|Open menu item handling method. However, since you need to 
perform the same operations when the Open button is pressed, you’ll 
create the fileOpen() method so you can have just one copy of that code, 
and call it from both the File|Open menu and the Open button.

1 Create a fileOpen() method stub. You can put this method just above 
the openFile(String fileName) method. The stub should look like this:



9-32 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 2 :  A c t i v a t i n g  t h e  t o o l b a r  b u t t o n s

// Handle the File|Open menu or button, invoking 
// okToAbandon and openFile as needed.
 void fileOpen() {
}

2 Go to your existing File|Open event handler, 
jMenuItem2_actionPerformed(). Select all the code between the first 
comment and the last closing curly brace in 
jMenuItem2_actionPerformed(). The code selected should be:

if (okToAbandon()) {
  return;
}

// Use the OPEN version of the dialog, test return for Approve/Cancel
if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {
  // Call openFile to attempt to load the text from file into TextArea
  openFile(jFileChooser1.getSelectedFile().getPath());
}
this.repaint();

3 Cut this code out of the jMenuItem2_actionPerformed() block and paste it 
into the new fileOpen() method stub.

Here is what the completed fileOpen() method looks like:

// Handle the File|Open menu or button, invoking okToAbandon and openFile
// as needed.
void fileOpen() {
  if (!okToAbandon()) {
    return;
  }
  // Use the OPEN version of the dialog, test return for Approve/Cancel
  if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {
    // Call openFile to attempt to load the text from file into TextArea
    openFile(jFileChooser1.getSelectedFile().getPath());
  }
  this.repaint();
}

4 Now, call fileOpen() from the File|Open menu item event handler. 
When you add the call to the empty stub, the event handler looks like 
this:

void jMenuItem2_actionPerformed(ActionEvent e) {
  // Handle the File|Open menu item.
  fileOpen();
}

Creating a helpAbout() method

Now do a similar thing for the Help|About menu item and the About 
button. Gather the code that is currently in the Help|About event handler 
into a new helpAbout() method and call it from both the menu and button 
event handlers.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-33

S t e p  1 3 :  H o o k i n g  u p  e v e n t  h a n d l i n g  t o  t h e  t e x t  a r e a

1 Place this helpAbout() method stub in your code just before the 
fileOpen() method:

// Display the About box.
void helpAbout() {
}

2 Cut the following code out of jMenuHelpAbout_actionPerformed() and 
paste it into the new helpAbout() method stub:

TextEditFrame_AboutBox dlg = new TextEditFrame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, 
    (frmSize.height - dlgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.show();

3 Insert the call helpAbout(); into jMenuHelpAbout_actionPerformed() so the 
method looks like this:

//Help | About action performed
public void jMenuHelpAbout_actionPerformed(ActionEvent e) {
  helpAbout();
}

4 Now, save and run the application. Try the Open, Save, and About 
buttons. Compare them with the File|Open, File|Save, and Help|
About menu items.

5 Close the “Text Editor” application and close the JBuilder message 
pane.

Step 13: Hooking up event handling to the text area
Now, hook up the event handling to the JTextArea so your program can 
mark the file as dirty whenever the user modifies the file.

To understand what we’re going to do, remember that Swing is 
architected so that the UI is completely separate from the data being 
represented in it. UI components have a set of classes all to themselves, 
and information to be represented has a set of classes that hold and 
manipulate the data. The data-holding classes are called models. Lists use 
ListModel, tables use TableModel, and documents use Document.

We’ll add a Swing DocumentListener to the jTextArea’s DocumentModel and 
check for events that insert, remove, or change things in the file.

1 Switch to design mode and select jTextArea1.

2 Right-click the document property in the left column of the Inspector.

3 Choose Expose As Class Level Variable from the context menu. 



9-34 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 3 :  H o o k i n g  u p  e v e n t  h a n d l i n g  t o  t h e  t e x t  a r e a

A document1 object is placed in the Default folder of the component tree, 
where we can now set its properties and events.

4 Select document1 in the component tree, then switch to the Events tab in 
the Inspector.

5 Create a changedUpdate() event by double-clicking the event’s value 
field. 

Look inside the jbInit() method for this new DocumentListener:

document1.addDocumentListener(new 
TextEditFrame_document1_documentAdapter(this));

Tip Quickly search in the editor using the Find tool in the toolbar.

6 Insert the following code into the 
document1_changedUpdate(DocumentEvent e) event stub you created:

dirty = true;

7 Return to the designer, select document1, and create two more events 
from the Inspector for document1: insertUpdate() and removeUpdate(). 
Insert the same line of code in these events that you used in the 
changedUpdate() event. 

This will make sure that any character typed in the text area will force 
the dirty flag to true.

8 Add the following three lines to the top of the okToAbandon() method so 
that now it will really be testing the dirty value:

 if (!dirty) {
   return true;
 }



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-35

S t e p  1 4 :  A d d i n g  a  c o n t e x t  m e n u  t o  t h e  t e x t  a r e a

The okToAbandon() method should now look like this:

// Check if file is dirty.
// If so, prompt for save/don't save/cancel save decision.
boolean okToAbandon() {
  if (!dirty) {
    return true;
  }
  int value =  JOptionPane.showConfirmDialog(this, "Save changes?",
                                       "Text Edit", 
JOptionPane.YES_NO_CANCEL_OPTION) ;
    switch (value) {
    case JOptionPane.YES_OPTION:

      // Yes, please save changes
      return saveFile();
    case JOptionPane.NO_OPTION:

      // No, abandon edits; that is, return true without saving
      return true;
    case JOptionPane.CANCEL_OPTION:
    default:

      // Cancel the dialog without saving or closing
     return false;
  }
}

9 Save your work, run the program, and test to see that dirty and clean 
states of the file work properly. The Save Changes prompt should not 
appear if you use File|New, File|Open, or File|Exit on a clean file, but 
should appear when you use these commands on a dirty file.

10 Close the “Text Editor” application and close the JBuilder message 
pane.

Step 14: Adding a context menu to the text area
This step is for JBuilder
SE and Enterprise only.
Personal users skip this
step and go to Step 15.

The DBTextDataBinder component adds a context menu to Swing text 
components for performing simple editing tasks such as cutting, copying, 
or pasting clipboard data. A context menu is a menu that’s accessed by 
right-clicking a UI object, and contains only commands that are pertinent 
in that object.

DBTextDataBinder also has built-in actions to load and save files into a 
JTextArea, but they don’t allow you to retrieve the file name loaded or 
saved. Unfortunately, we want this information because this application 
displays the file name in the status bar. Therefore, we are going to add a 



9-36 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 4 :  A d d i n g  a  c o n t e x t  m e n u  t o  t h e  t e x t  a r e a

DBTextDataBinder, bind it to jTextArea1, and then suppress its Open and 
Save actions.

1 Click the Design tab and select the DBTextDataBinder component

on the dbSwing Models tab of the component palette.

2 Drop it anywhere in the designer or on the component tree. It is placed 
in the Data Access folder in the tree as dBTextDataBinder1.

3 Select dBTextDataBinder1 in the component tree, and then open its 
jTextComponent property value list in the Inspector.

4 Choose jTextArea1 from the drop-down list.

This binds dBTextDataBinder1 to jTextArea1 by placing the following line 
of code in the jbInit() method.

dBTextDataBinder1.setJTextComponent(jTextArea1);

5 Select the enableFileLoading property for dBTextDataBinder1 and set its 
value to false using the drop-down arrow.

6 Do the same thing for the enableFileSaving property.

7 Save your work, then run the application. 

Notice that you now have a context menu when you right-click the text 
area. Also notice that it does not contain menu items for Open and 
Save.

Note You can actually add any of the items on the context menu to your menu 
bar and toolbar by using DBTextDataBinder’s public static Action classes, 
but you would have to provide the icons and write the code manually.

For an example of how to do this, see the TextPane sample in the JBuilder 
samples folder: <jbuilder>/samples/dbswing/TextPane.

See also

• The API documentation on the DBTextDataBinder component. To read it,

a Click the Source tab of TextEditFrame.java.

b Select dBTextDataBinder1 in the structure pane. It’s inside the 
TextEditFrame component. 

The dBTextDataBinder1 declaration is highlighted in the editor.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-37

S t e p  1 5 :  S h o w i n g  f i l e n a m e  a n d  s t a t e  i n  t h e  w i n d o w  t i t l e  b a r

c Put your cursor inside the class name DBTextDataBinder.

d Right-click and select Find Definition. 

The DBTextDataBinder source file opens in the editor.

e Click the Doc tab to view the API documentation.

Close the “Text Editor” application before continuing to the next step.

Step 15: Showing filename and state in the window title bar
In this final step, we will add code that uses the title bar of the application 
to display the current filename, and to display an asterisk if the file is 
dirty.

We’ll create a new method that will update the title bar, then call the 
method from places where the code changes either the current file name 
or the dirty flag. This new method will be updateCaption().

1 Click the jMenuFileExit_actionPerformed(ActionEvent e) method in the 
structure pane. This moves the cursor to that event handling method 
and highlights it in the editor.

2 Place the cursor just above this method and insert the following 
updateCaption() method block:

// Update the title bar of the application to show the filename and its 
dirty state.
void updateCaption() {
  String caption;

  if (currFileName == null) {
     // synthesize the "Untitled" name if no name yet.
     caption = "Untitled";
  }
  else {
    caption = currFileName;
  }

  // add a "* " in the caption if the file is dirty.
  if (dirty) {
    caption = "* " + caption;
  }
  caption = "Text Editor - " + caption;
  this.setTitle(caption);
}



9-38 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 5 :  S h o w i n g  f i l e n a m e  a n d  s t a t e  i n  t h e  w i n d o w  t i t l e  b a r

Now, put the method call updateCaption(); from each of the places the 
dirty flag actually changes or whenever you change the currFileName. The 
new method call location is indicated in a comment line in each code block 
below.

1 Put the call updateCaption(); inside the try block of the TextEditFrame() 
constructor, as the next line immediately after the call to jbInit(). The 
try block will look like this:

//Construct the frame
public TextEditFrame() {
  enableEvents(AWTEvent.WINDOW_EVENT_MASK);
  try  {
    jbInit();
    updateCaption();    // <---- HERE
  }
  catch(Exception e) {
    e.printStackTrace();
  }
}

2 Put it as the last line in the try block of the openFile() method, which 
will look like this:

try {
  // Open a file of the given name.
  File file = new File(fileName);

  // Get the size of the opened file.
  int size = (int)file.length();

  // Set to zero a counter for counting the number of
  // characters that have been read from the file.
  int chars_read = 0;

  // Create an input reader based on the file, so we can read its data.
  // FileReader handles international character encoding conversions.
  FileReader in = new FileReader(file);

  // Create a character array of the size of the file,
  // to use as a data buffer, into which we will read
  // the text data.
  char[] data = new char[size];

  // Read all available characters into the buffer.
  while(in.ready()) {
    // Increment the count for each character read,
    // and accumulate them in the data buffer.
    chars_read += in.read(data, chars_read, size - chars_read);
  }
  in.close();



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-39

S t e p  1 5 :  S h o w i n g  f i l e n a m e  a n d  s t a t e  i n  t h e  w i n d o w  t i t l e  b a r

  // Create a temporary string containing the data,
  // and set the string into the JTextArea.
  jTextArea1.setText(new String(data, 0, chars_read));

  // Cache the currently opened filename for use at save time...
  this.currFileName = fileName;
  // ...and mark the edit session as being clean
  this.dirty = false;

  // Display the name of the opened directory+file in the statusBar.
  statusBar.setText("Opened "+fileName);
  updateCaption();    // <---- HERE
}
catch (IOException e)
{
   statusBar.setText("Error opening "+fileName);
}

3 Put it right before return true; in the try block of the saveFile() method:

try
{
  // Open a file of the current name.
  File file = new File (currFileName);

  // Create an output writer that will write to that file.
  // FileWriter handles international characters encoding conversions.
  FileWriter out = new FileWriter(file);
  String text = jTextArea1.getText();
  out.write(text);
  out.close();
  this.dirty = false;
  
  // Display the name of the saved directory+file in the statusBar.
  statusBar.setText("Saved to " + currFileName);
  updateCaption();    // <---- HERE
  return true;
}
catch (IOException e) {
  statusBar.setText("Error saving "+currFileName);
}
return false;

4 Make it the last line of code in the if block of the File|New menu 
handler jMenuItem1_actionPerformed():

void jMenuItem1_actionPerformed(ActionEvent e) {
  // Handle the File|New menu item.
  if (okToAbandon()) {
     // clears the text of the TextArea
     jTextArea1.setText("");
    // clear the current filename and set the file as clean:
    currFileName = null;
    dirty = false;
    updateCaption();    // <---- HERE
  }
}



9-40 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

5 When the dirty flag is first set in a clean file due to user typing. This is 
done in each of the document1 event handlers. The event handlers should 
be changed to read:

void document1_changedUpdate(DocumentEvent e) {
  if (!dirty) {
    dirty = true;
    updateCaption();    // <---- HERE
  }
}

void document1_insertUpdate(DocumentEvent e) {
  if (!dirty) {
    dirty = true;
    updateCaption();    // <---- HERE
  }
}

void document1_removeUpdate(DocumentEvent e) {
  if (!dirty) {
    dirty = true;
    updateCaption();    // <---- HERE
  }
}

6 Run your application and watch the title bar as you perform the 
following operations:

• Change the file name using File|SaveAs.

• Type in the text area, making the file dirty. Notice the * appear in the 
title bar as soon as the file has been touched.

• Save the file, making it clean.

• SE and Enterprise users,  try out these actions using the context 
menu.

Congratulations! You have used JBuilder’s visual design tools to create a 
functional text editor written entirely in Java. Users of JBuilder Personal 
edition, you have completed your tutorial. Please feel free to compare 
your code to the code in the sample, <jbuilder>/samples/SimpleTextEditor.

Step 16: Deploying the Text Editor application to a JAR file
This step is for JBuilder
SE and Enterprise only.

Now that you’ve created the “Text Editor” application, you can deploy all 
the files to a Java Archive File (JAR) using JBuilder’s Archive Builder.

Note If you haven’t yet completed Steps 1 through 15 of this tutorial, you can 
still complete this step of the tutorial using the Text Editor sample project 
in the samples/TextEditor/ directory of your JBuilder installation. To do 
this, you need to convert the paths specified in the tutorial to point to 
samples/TextEditor/ and its subdirectories.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-41

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

Overview

Deployment is an advanced subject which takes some study and 
experience to understand. JBuilder’s Archive Builder reduces this 
complexity and helps you create an archive file that meets your 
deployment requirements.

This step of the tutorial gives you instructions for deploying the “Text 
Editor” application explicitly. It is not intended to be a comprehensive 
example of all the situations you’ll run across when deploying Java 
programs. Each application or applet you deploy has its own unique set of 
deployment issues, so it’s difficult to generalize. Links are provided 
throughout this step for further information on deployment, including 
Sun’s Java™ Tutorial.

The first step in deploying any program is to identify which project and 
library contents will be included in the archive. This will help you 
determine what classes, dependencies and resources to include. Including 
all classes, resources and dependencies in your archive creates a large 
archive file. However, the advantage is that you don’t need to provide 
your end-user with other files as the archive contains everything needed 
to run the program. If you exclude some or all classes, resources or 
dependencies, you’ll need to provide them to your end-user separately.

The Archive Builder will not include the JDK in your archive. It assumes 
that the JDK classes already exist on the target computer in the form of an 
installed JDK, Java runtime environment or Java Plug-in, or that you will 
be providing it in your installation.

JBuilder’s Archive Builder creates an archive node in the project pane, 
allowing easy access to the archive file. At any time during development, 
you can make the archive file, rebuild it, or reset its properties. You can 
also view the contents of the archive and the contents of the manifest file.

Running the Archive Builder

To run the Archive Builder wizard and create the archive node and file for 
the Text Editor tutorial,

1 Save all files in the project and compile it.

2 Choose Wizards|Archive Builder. 

Step 1 of the Archive Builder appears.

3 Choose Application for the Archive Type. 



9-42 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

Step 1 of the wizard should look like this:

4 Click Next to go to Step 2 of the wizard.

5 Change the name of the archive to Text Editor Application JAR in the 
Name field. This is the name of the archive node that will be displayed 
in the project pane.

6 Accept the default JAR file name and path: <project 
path>/TextEditor.jar.

7 Accept the remaining defaults on this page. 

When you’re done, Step 2 of the wizard should look like this:

8 Click Next to go to Step 3 of the wizard, where you determine what 
project classes and resources are deployed. 

The project classes and resources are those on your output path, 
defined on the Paths page of the Project Properties dialog box. Usually, 
this is set to the classes directory of your project. For this tutorial, 



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-43

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

accept the default, so that the wizard includes all classes and resources 
on the output path.

Important Although this option is the safest and simplifies deployment, it makes 
the archive file larger. If for some reason your project includes 
unnecessary files on the output path, they are also included, making 
your deployed file very large. In this case, you might consider selecting 
the first or second option and manually adding classes and files with 
the Add Classes and Add Files buttons. Then test the deployed 
application to be sure you’ve included all the necessary files. 

Step 3 of the wizard will look like this:

9 Click Next to go to Step 4 of the wizard. 

In this step, you choose how library contents are included in your 
archive file. Usually libraries are not included in the archive file but are 
supplied as separate JAR files and included on the CLASSPATH at runtime. 
This is the easiest way to deploy and creates the smallest program JAR 
file. However, in this example, you’ll include the libraries in the 
archive.

a Select dbSwing from the list.

b Choose the Include Required Classes And All Resources option from 
the Library Settings area.

c Select DataExpress from the list and choose Include Required 
Classes And All Resources. 

Even though you did not use the DataExpress library in this tutorial, 
some dbSwing classes depend on DataExpress classes. Therefore, 
they need to be included in the archive file.

Note that both libraries are deployed with Deps & Resources.



9-44 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

Caution The Archive Builder may not always find all the files. It’s 
recommended that you test the deployed application, add any missing 
files, then redeploy. 

Step 4 of the wizard should look like this:

10 Click Next to go to Step 5, where you create the manifest file. 

There can only be one manifest file in an archive, and it always has the 
path name META-INF/MANIFEST.MF.

11 Accept the default settings for Step 5 of the wizard. These have the 
following result:

• Automatically include the manifest file in the archive file.

• Automatically create the manifest file for you.

Step 5 of the wizard will look like this:



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-45

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

12 Click Next to go to Step 6, where you choose how the Archive Builder 
finds the main class. 

For this tutorial, leave the default setting Determine Main Class From 
Runtime Configurations. This option uses the main class in the default 
runtime configuration specified on the Run page of the Project 
Properties dialog box. 

Step 6 of the wizard will look like this:

13 Click Finish to create the archive node. 

The archive node, Text Editor Application JAR, is now displayed in the 
project pane. You can right-click the archive node and make it, rebuild 
it, or change its properties.

14 Select Project|Make Project or right-click the archive node and choose 
Make to make the project and generate the JAR file.

15 Expand the archive node in the project pane to see the archive file.

16 Double-click the archive file, TextEditor.jar.



9-46 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

Its contents are displayed in the structure pane and the contents of the 
manifest file are displayed in the content pane. JBuilder should now 
look similar to this:

Notice the following two headers in the manifest file:

See also

• “Using the Archive Builder” in Building Applications with JBuilder.

• “Understanding the Manifest” at 
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html.

Manifest-Version: 1.0 Indicates that the manifest’s entries take the 
form of “header:value” pairs and that it 
conforms to version 1.0 of the manifest 
specification.

Main-Class: 
texteditor.TextEditClass

Indicates that TextEditClass.class is the 
entry point for your application (the class 
containing the public static void 
main(String[] args) method, which runs the 
application.)



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-47

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

Testing the deployed application from the command line

Before you run the application from the command line, you need to make 
sure your operating system’s PATH environment variable points to the JDK 
jre/bin/ directory, the Java runtime environment. The JBuilder installation 
process guarantees that JBuilder knows where to find the JDK class files. 
However, once you leave the JBuilder environment, your system needs to 
know where the class files for the Java runtime are installed. How you set 
the PATH environment variable depends on which operating system you 
are using.

To run the Text Edit tutorial from the command line,

1 Switch to your command-line window and change to the TextEditor 
directory where the JAR file is located.

2 Check to see if Java is on your PATH by typing java at the command line. 
If it is, the Java usage and options will display. If it isn’t on your PATH, 
set your PATH environment variable to the JDK’s bin directory.

3 Enter the following command at the command line:

java -jar TextEditor.jar

where,

• java is the Java tool that runs the jar file.

• jar is the option that tells the Java VM that the file is an archive file.

• TextEditor.jar is the name of the archive file.

Since the manifest file provides the information in the Main-Class 
header about which class to run, you don’t need to specify the class 
name at the end of this command. And, because all classes, resources, 
and dependencies are included in the archived JAR file, you don’t need 
to specify a classpath or copy JBuilder libraries to this directory.

Note When you use the -jar option, the Java runtime ignores any explicit 
classpath settings. If you run this JAR file when you’re not in the 
TextEditor directory, use the following Java command:

java -jar -classpath <full_path> <main_class_name>

The Java runtime looks in the JAR file for the startup class and the other 
classes used by the application. The Java VM uses three search paths to 
look for files: the bootstrap class path, the installed extensions, and the 
user class path. 

If the application doesn’t run, examine the errors generated in the 
command-line window. Make sure the jbuilder.lib folder is on your 
classpath. Make sure you are in the correct directory and there aren’t 
any spelling errors in the command.



9-48 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

4 Test the application when it runs to be sure it’s working correctly. 
Create, save, and open a file. Right-click in the text editor to see if the 
context menu is working. Also, the application could be running and 
still have errors. Check the command-line window for any error 
messages. Read the error messages, if any, to look for missing classes or 
packages.

See also

• “How Classes Are Found” at 
http://java.sun.com/j2se/1.3/docs/tooldocs/findingclasses.html to learn 
more about how Java searches paths.

Modifying the JAR file and retesting the application

If you have runtime errors, you need to add any missing classes to the JAR 
file using the Archive Builder. If you don’t have errors, you can skip these 
steps.

1 Return to the Text Editor project in JBuilder.

2 Right-click the Text Editor Application JAR node in the project pane 
and choose Properties.

3 Select the appropriate tab and make any necessary changes.

4 Click OK to close the Properties dialog box.

5 Right-click the archive node and choose Make to rebuild the JAR file.

6 Repeat the testing procedure with the modified JAR file as described in 
“Testing the deployed application from the command line” on 
page 9-47, and test the application when it runs.

That’s it!

As you can see, there is a lot of information to assimilate related to 
deployment. Deployment goes far beyond just creating an archive file. 
Not only do you have to make sure you provide all the necessary classes, 
resources, and libraries in your deployment set, you have to be concerned 
with other issues, such as learning about the java tool and the Jar tool. 
There are also differences between running JDK 1.1 and Java 2 
applications.

Take the time to study the wealth of information available at the links to 
Sun’s web site provided here, in other reputable online sources, and in the 
many excellent third-party books on the subject.



T u t o r i a l :  B u i l d i n g  a  J a v a  t e x t e d i t o r 9-49

S t e p  1 6 :  D e p l o y i n g  t h e  T e x t  E d i t o r  a p p l i c a t i o n  t o  a  J A R  f i l e

See also

• “Deploying Java programs” in Building Applications with JBuilder.

• Sun’s web page on Basic Tools at 
http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#basic.

• The Sun Tutorial trail on Jar files at 
http://java.sun.com/docs/books/tutorial/jar/index.html.



9-50 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-1

C h a p t e r

10
Chapter10Tutorial: Creating a UI with

nested layouts
This tutorial steps you through creating a user interface for a hypothetical 
application like a simple word processor. It shows you how to create the 
UI with JBuilder’s visual design tools, using nested panels and the simpler 
layout managers. It uses BorderLayout, FlowLayout, and GridLayout. Due to 
their complexity, GridBagLayout and CardLayout are discussed in detail 
elsewhere. For more information on layout managers, see Chapter 8, 
“Using layout managers,” and Sun’s “Creating a GUI with JFC/Swing” 
tutorial at http://java.sun.com/docs/books/tutorial/uiswing/index.html.

In this tutorial, you’ll use the Swing JPanel for all panel components, 
because unlike the AWT Panel, it has a border property. You will use the 
border property to add borders to the panels so you can see their 
boundaries when you add components to them in the designer. Once your 
UI design is finished, you can remove the borders wherever you like. The 
JPanel component is located on the Swing Containers tab of the 
component palette at the top of JBuilder’s UI designer. Throughout this 
tutorial, any reference to a panel implies JPanel.

Also in this tutorial, you’ll change some of the panel layout managers 
during the design phase to XYLayout (JBuilder SE or Enterprise) or null 
layout (JBuilder Personal). XYLayout, a JBuilder custom layout manager, 
places components in a container at specific x,y coordinates relative to the 
upper left corner of the container. Regardless of the type of display, the 
container will always retain the relative x,y positions of components. null 
layout means that no layout manager is assigned to the container. null 
layout (from Swing) is very similar to XYLayout in that you can put 
components in a container at specific x,y coordinates relative to the upper 
left corner of the container.



10-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s

Using XYLayout’s or null’s absolute positioning makes designing your UI 
easier, because you can control component positioning and sizing. But the 
disadvantage is that they do not adjust well to differences in systems, and 
as a result, they are not portable layouts. Because XYLayout and null use 
absolute positioning, containers and components do not resize correctly 
when the user resizes the application window. Therefore, it’s best not to 
leave a container in XYLayout or null for deployment due to the lack of 
portability. AWT layout managers, which don’t use absolute positioning, 
make it easy to adjust your application to different system look and feels, 
various system font sizes, and to a container’s changing size. Therefore, 
they are more portable than XYLayout and null. So, after the entire UI 
design is populated in this tutorial, you will change the layout managers 
of all the containers to the more portable AWT layouts.

For the best layout control in a UI design plus a design that is simpler and 
less deeply nested, it’s best to use a combination of GridBagLayout and the 
nesting techniques demonstrated in this tutorial. For an in-depth tutorial 
on GridBagLayout, see Chapter 11, “GridBagLayout tutorial.” If you are 
serious about doing Java UI development, it’s important to take the time 
to learn how to use GridBagLayout. Once you understand it, you’ll find it 
indispensable.

The application user interface you are about to design contains several 
panels that hold components, such as buttons, labels, and a text area. 
Because you are focusing on user interface design in this tutorial, the 
application you design is not fully functional. For example, if you click the 
Save button on the toolbar, nothing happens. Also, this tutorial is not the 
only way to design this user interface. For instance, you would normally 
use the JToolBar component when creating toolbars and GridBagLayout. In 
this tutorial, you use panels and buttons for the toolbar to demonstrate the 
use of nested panels and layouts. The buttons could be any type of 
component in your design.

Here is the UI you’re going to design:



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-3

S t e p  1 :  C r e a t i n g  t h e  U I  p r o j e c t

Note The screenshots in this tutorial use the Metal Look & Feel in JBuilder’s 
integrated development environment and in the application’s runtime 
environment.

Step 1: Creating the UI project
Before creating your application, you must create a project for the project 
and applications files. Once you’ve created the project, you’ll use the 
Application wizard to generate the source files. Create the project using 
the Project wizard.

Using the Project wizard

To open the Project wizard,

1 Choose File|New Project to open the Project wizard.

2 Make the following changes in Step 1:

• Name: NestedLayouts

Note By default, JBuilder uses this project name to create the project’s 
directory name and the package name for the classes.

• Check the Generate Project Notes File option. When you check this 
option, the Project wizard creates an HTML file for project notes and 
adds it to the project.

• Make sure the Add Project To Active Project Group option is 
unchecked. You don’t want to add this project to any of your real 
work.

3 Accept all other defaults on Step 1.

4 Click Next to go to Step 2 of the Project wizard.

5 Accept the default paths in Step 2.

6 Click Next to continue to Step 3 of the Project wizard.

7 Fill out the class Javadoc fields. This information is saved in the project 
HTML file. It’s also used for Javadoc comments if you choose the 
Generate Header Comments option in many of JBuilder’s wizards, such 
as the Application and Class wizards.

8 Press Finish to create the project. A project file and a project HTML file 
are added to the project and appear in the project pane.

See also

• “Creating and managing projects” in Building Applications with JBuilder.



10-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  2 :  G e n e r a t i n g  t h e  a p p l i c a t i o n  s o u r c e  f i l e s

• “Managing paths” in Building Applications with JBuilder.

• “How JBuilder constructs paths” in the “Managing paths” chapter in 
Building Applications with JBuilder for more information on Step 2 of the 
Project wizard.

• “Where are my files?” in the “Managing paths” chapter in Building 
Applications with JBuilder.

Step 2: Generating the application source files
Now that you have a project, you can use the Application wizard to 
automatically generate your application files.

Using the Application wizard

To open the Application wizard,

1 Choose File|New to open the object gallery.

2 Choose the General tab, if it’s not already the active tab.

3 Double-click the Application icon to open the Application wizard. Note 
the default package name which is extracted from the project name.

4 Click Finish. We won’t use the additional files generated in Step 2 of the 
Application wizard, and we’re going to use the default values in Step 1 
of the wizard.

The project appears in the project pane of the AppBrowser with 
Frame1.java open in the content pane. You’ll see two additional files in the 
project pane: Application1.java, which contains the main() method, and 
Frame1.java, the UI container.

Note In JBuilder SE and Enterprise editions, an automatic source package node 
also appears in the project pane if the Automatic Source Packages option 
is enabled on the General page of the Project Properties dialog box 
(Project|Project Properties).

1 Click the Design tab at the bottom of Frame1.java in the content pane to 
open the visual designer in UI design mode.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-5

S t e p  2 :  G e n e r a t i n g  t h e  a p p l i c a t i o n  s o u r c e  f i l e s

Figure 10.1 UI designer

The structure pane now contains a component tree and the content 
pane contains the UI designer, with the Inspector on the right and the 
component palette above the design surface.

Notice the structure of your UI design in the component tree as created 
by the Application wizard. You have a frame called this, under which 
is the contentPane (BorderLayout) placed in the UI folder. It is under this 
folder and frame that JBuilder places the visual UI components as you 
add them to your design. You’ll actually be designing the contentPane in 
the UI designer. Notice also that this is highlighted in the component 
tree and sizing nibs are on each corner of the frame in the designer. The 
frame is anchored at its top left corner. The properties for this are 
displayed in the Inspector to the right of the designer.

Tip The status bar below the structure pane displays information on any 
component that the mouse hovers over in the designer.



10-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  2 :  G e n e r a t i n g  t h e  a p p l i c a t i o n  s o u r c e  f i l e s

2 Look at the Properties page of the Inspector and find the value of the 
title property, which is “Frame Title”.

3 Triple-click Frame Title to highlight it, type Nested Layouts in its place, 
then press Enter. The new title displays in the frame’s title bar at 
runtime.

Now, make the surface area in the UI designer larger, so you have more 
room to work.

4 Click the bottom right corner nib with the mouse and drag it diagonally 
away from the center of the frame to enlarge it in the designer. You are 
actually resizing the main container frame for your UI, the component 
instance Frame1 of the JFrame class.

Tip If you can’t see the nib on the bottom right corner, maximize the 
AppBrowser before you drag the frame to a larger size. If you want 
even more space, hide the project and structure panes by selecting 
View|Toggle Hide All. Note, however, that closing the curtain hides 
the component tree that is in the structure pane, so you’ll have to toggle 
the curtain every time you want to see the tree. You can also make the 
designer larger by dragging its borders.

The actual screen size of a UI container at runtime is not necessarily 
determined by the size you make it in the UI designer. Initial runtime 
screen size is determined by the container’s layout manager.

You can manually change the size of the UI frame by resizing it at 
runtime.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-7

S t e p  3 :  C h a n g i n g  c o n t e n t P a n e ’ s  l a y o u t

Step 3: Changing contentPane’s layout
A Java UI container uses a special object called a layout manager to 
control how components are located and sized in the container each time 
it is displayed. Layout managers provide your UI design with such 
advantages as portability across platforms, dynamic resizing of 
components at runtime, and ease of translation with strings of different 
sizes.

A layout manager automatically arranges the components in a container 
based on the layout manager’s layout rules and property settings, the 
layout constraints associated with each component, common component 
properties (preferredSize, minimumSize, maximumSize, alignmentX, and 
alignmentY), and the size of the container. By default, contentPane’s layout 
manager is BorderLayout. You can see the layout manager by clicking the 
icon to the left of contentPane in the component tree and expanding the 
tree.

BorderLayout is best used in UI design when placing five or fewer 
components where one center component requires the most space. 
BorderLayout arranges components in five locations: Center, North, South, 
East, and West, with Center being the largest.

If you leave the contentPane in BorderLayout. you might accidentally drag a 
panel with the mouse to another area of the BorderLayout frame, causing 
the panel to shrink in height or width and move to one of the edges of the 
frame. If this happens after you have the UI design populated with lots of 
components, it might be difficult for you to immediately determine what 
the problem is.

To prevent this from happening, change the contentPane to XYLayout or null, 
layouts that allow more control over the positioning of components.

1 Select contentPane in the component tree.

2 Select its layout property on the Properties tab of the Inspector.

3 Click the drop-down arrow and select XYLayout or null from the list.

Starting with null or XYLayout makes prototyping your design easier. Later, 
after adding components to the container, you can switch to an 
appropriate portable layout for your design. It’s best not to leave a 
container in null or XYLayout, because they use absolute positioning and, 



10-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  4 :  A d d i n g  t h e  m a i n  p a n e l s

therefore, components do not adjust well when you resize the parent 
containers. These layouts also do not adjust well to differences in users 
and systems and as a result are not portable layouts. It’s best to use these 
layouts in the design phase and then convert everything to the portable 
layouts at the end of the design phase. You’ll change the layout manager 
back to BorderLayout at the end of the tutorial, after all the other panels are 
converted to their ultimate layouts.

Step 4: Adding the main panels
Now, begin adding panels to your UI design. When you’re done, the 
design should look something like this:

1 Select contentPane in the component tree.

2 Click the Swing Containers tab on the component palette at the top of 
the designer and click the JPanel icon.

Tip Move the mouse over a component on the component palette to see its 
name in a tool tip.

3 Draw in the first panel by clicking and dragging diagonally from the 
top left corner of the designer to the right side of the contentPane, 
creating a panel that fills the top fourth of the design. This panel will be 
the container for two toolbars at the top of the application.

Notice that a new component called jPanel1 is added to the UI folder in 
the component tree under the contentPane. You can see sizing nibs 
around the edges of the panel showing its size and location. Click the 
expand icon to see jPanel’s layout manager, FlowLayout. FlowLayout is 
used when placing a few components in a row. Because you’ll be 
placing two toolbar panels in a row in this top panel, leave the layout as 
FlowLayout.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-9

S t e p  4 :  A d d i n g  t h e  m a i n  p a n e l s

4 Shift+click the JPanel icon on the component palette and draw two more 
panels in the designer. For the moment, don’t worry about making the 
layout perfect. You’ll fine-tune the layout later. Notice that the second 
and third panels are also using FlowLayout. You’ll change these later 
before adding components. Check the component tree to see that all 
three panels are nested inside the contentPane.

Tip If you Shift+click the JPanel component on the component palette, you 
can add multiple panels without clicking the JPanel icon each time. This 
is particularly useful when adding multiple, identical components to a 
layout. When you’re done adding the panels, click the Selection arrow 
to the left of the palette to deselect the JPanel component.

5 Click the Selection arrow on the component palette to deselect the 
multiple selection feature. Each of these three panels you just added 
will contain other components. The top panel will have two panels, 
each containing a toolbar with buttons. The middle panel will contain a 
scroll pane and a text area. And the bottom panel will contain a status 
bar with two labels. To make each panel more distinguishable in the 
designer, change the border property to RaisedBevel. You’ll use a 
shortcut by selecting all the panels and changing the border property 
for all of the panels at the same time.

6 Select jPanel1, jPanel2, and jPanel3 using Shift+click to select all of them. 
You can select them in the designer or in the component tree.

7 Choose RaisedBevel from the border property drop-down list on the 
Properties page of the Inspector.

While it isn’t necessary to use a border on the panels during design, it 
does make the design work easier when you are nesting multiple 
panels and components. This is because as soon as you select a 
component on the palette, then click the panel, the panel’s sizing nibs 
disappear and you can’t see if you are still inside the panel when you 
drag the new component to its desired size.

For the purpose of demonstration, the images in this tutorial also show 
the panels in contrasting shades of gray to make it easier to differentiate 
them. Changing the background color of the panels is another way you 
could make them visible in the designer if you don’t want to use 
borders.

Adjust the layout using some of the designer’s menu selections. For 
example, you can make these three panels the same width horizontally.

1 Cancel the multiple selection in the component tree by selecting 
another component.

2 Select the top panel in the designer and use the sizing nibs to adjust its 
width.



10-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  4 :  A d d i n g  t h e  m a i n  p a n e l s

3 Hold down the Shift key, and click the middle and bottom panels. Now 
all three panels are selected.

4 Right-click with the mouse over one of the selected panels and choose 
Same Size Horizontal. The middle and bottom panels will snap to the 
same width as the top panel. Then select Align Left and Even Space 
Vertical from the designer’s context menu.

5 Click any component not selected or click the component tree to cancel 
the multiple selection.

Tip The first component selected is matched, so be careful which one you 
select first.

To drag a panel to another position, select the panel and move the 
mouse over the center black nib in the panel. You’ll see a four-headed 
arrow appear. Click and drag the component to the new location. Be 
careful not to drag it out of its container and into another container. If 
you make a mistake, just choose Edit|Undo and the design will return 
to its previous state.

Notice the structure of your UI design now in the component tree:

Now, rename the three panels you just added, so they have more 
meaningful names.

1 Select each panel in the component tree. Right-click the panel and select 
Rename from the menu. Give each panel the appropriate name:

• top panel: top

• middle panel: middle

• bottom panel: statusbar

At this point, it would be a good idea to save the entire project and run 
the application.

2 Choose File|Save All from the main menu.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-11

S t e p  5 :  C r e a t i n g  t o o l b a r s

3 Choose Run|Run Project or click the Run icon on the toolbar. Your 
application should look something like this:

You may need to modify the size of the this frame or the position of 
your panels after running the application. Before enlarging any panels, 
select this and make it larger. Also, when you run the application, 
resize the application window. Notice that the panels do not resize with 
the window. This is why you do not want to leave your design in 
XYLayout or null. At the end of the tutorial, when you change 
contentPane’s layout back to BorderLayout the panels will resize correctly 
with the window.

4 Exit the application.

5 Right-click the Application1 tab on the message pane and select 
Remove All Tabs to close the message pane.

Step 5: Creating toolbars
Before adding panels to the top panel, which will contain two toolbars, 
you’ll change the layout manager of the top panel to XYLayout or null, so 
you’ll have complete control over the position of the panels you are 
adding. Then, you’ll add two panels and rename them to more 
meaningful names. The first panel will hold the left toolbar and the second 
panel will contain the right toolbar.

1 Select the top panel.

2 Change the layout manager from <default layout> (FlowLayout) to 
XYLayout or null.



10-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  6 :  A d d i n g  t o o l b a r  b u t t o n s

3 Draw two panels on the top panel using the same method as in step 1 
and matching the look of the image below. Don’t worry about their size 
and position yet. We’ll be fine-tuning them later.

4 Select each of the panels in the component tree and rename each panel 
on the top panel as follows:

• top left panel: left_toolbar

• top right panel: right_toolbar

5 Change the borders on both panels to RaisedBevel.

Now, let’s adjust the horizontal height of the toolbar panels and align 
them to the top.

6 Hold down the Ctrl key and select left_toolbar and right_toolbar in the 
component tree.

7 Right-click over one of these selected panels in the UI designer and 
choose Align Top.

8 Right-click again with the two panels still selected and choose Same 
Size Vertical.

9 Save your work.

Step 6: Adding toolbar buttons
Before adding buttons to your toolbars, you must change the two toolbar 
panel layout managers to GridLayout, so the buttons you add will be the 
same size. GridLayout is used to place components of identical sizes in a 
grid of rows and columns.

1 Select left_toolbar and right_toolbar and change their layout properties 
to GridLayout in the Inspector. Now, let’s add the buttons to the two 
toolbar panels and label them.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-13

S t e p  6 :  A d d i n g  t o o l b a r  b u t t o n s

2 Choose the Swing tab of the component palette.

3 Shift+click the JButton component and click eight times on the 
left_toolbar panel in the component tree. The first button completely 
fills the panel and, as each button is added, GridLayout makes them the 
same size.

4 Click the Selection arrow on the component palette to deselect the 
JButton component selection.

5 Select each button in turn, starting with the far left button, and change 
its text property in the Inspector as follows:

• New
• Open
• Save
• Exit
• Cut
• Copy
• Paste
• Undo

Important You may not be able to see the text on the buttons yet because the 
margins need to be adjusted. You’ll do that to all the buttons after you 
finish adding them.

Note If your buttons are not in the correct order, right-click a button and 
choose Move To First or Move To Last from the designer’s context 
menu.

6 Put jButton9 on the right_toolbar panel and change its text to Help.

The important thing now is that the buttons are fully nested inside their 
panels. To be sure they are all embedded properly, check the 
component tree to see if each button is indented under the correct panel 
in the tree outline. If any buttons did not get nested inside their panels, 
you’ll see them in the component tree at the same level of indentation 
as the panels.



10-14 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  6 :  A d d i n g  t o o l b a r  b u t t o n s

The component tree looks something like this, although your buttons 
may be in a different order:

Next, make the button text readable by reducing the margins.

1 Select all the buttons on both panels in the designer or the component 
tree. You can use the Shift key to select consecutive components in 
combination with the Ctrl key to select the Help button on the right 
toolbar in the component tree.

2 Change the margin property to 2,2,2,2.

Note If you can’t see all the text on the buttons, make them wider by first 
selecting this in the component tree and making it wider first, then top 
next, working inward to widen the rest of the panels.

Finally, put a little space between the buttons on the left_toolbar panel. 
You do this by changing the horizontal gap on the layout manager itself. 
Notice that the first item under each container in the component tree is its 
layout manager.

1 Select the GridLayout object for left_toolbar.

2 Change the hgap property in the Inspector to 2 and press Enter.

3 Save your work again and run the application. Notice the space added 
between the buttons.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-15

S t e p  7 :  A d d i n g  c o m p o n e n t s  t o  t h e  m i d d l e  p a n e l

Your design should now look something like this:

Optional If the buttons don’t look the same at runtime as they did in the 
designer, it is probably because the look and feel set in JBuilder is 
different from that on your system. Changing JBuilder’s look and feel 
(Tools|IDE Options) changes it for the JBuilder IDE but doesn’t change 
the runtime look and feel. The screenshots in this tutorial use Metal for 
both JBuilder and runtime. To set the look and feel you want at 
runtime, open Application1.java and change the following line:

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

to one of the following:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");
UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");
UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

4 Save your work and close the application and the message pane.

Step 7: Adding components to the middle panel
Now let’s work on the middle panel that will contain a scroll pane and a 
text editing area. First, you must change the layout manager to 
BorderLayout. This layout is a good choice when placing five or fewer 
components and especially when you want a component to completely fill 
the layout. BorderLayout has five areas: Center, North, South, East, and 
West with the largest area given to the Center. In this example, you want 
the scroll pane and the text area to completely fill the middle panel with a 
constraint of Center.

1 Select the middle panel in the component tree and change its layout 
manager to BorderLayout.

2 Choose the Swing Containers tab on the component palette.

3 Select the JScrollPane component and drop onto the Designer. 
JScrollPane is used to display a component, such as a text area, that is 



10-16 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  8 :  C r e a t i n g  a  s t a t u s  b a r

too large to display or that changes dynamically. JScrollPane should fill 
the middle panel. If it doesn’t change, JScrollPane’s constraints property 
to Center in the Inspector.

4 Choose the Swing tab on the component palette and select the JTextArea 
component. Drop it on JScrollPane in the designer or the component 
tree. It should completely fill JScrollPane.

Note Swing components with a text property have a default text value 
entered into the text property. You can remove this by highlighting the 
text displayed in the text property value and pressing Delete, then Enter.

5 Save your work again and run the application to see how the UI looks.

This is what your UI should look like now:

6 Exit the application and close the message pane.

Step 8: Creating a status bar
Now, work on the last panel of your UI design, the status bar. Although 
this area, like the others, won’t be fully functional, you’ll make it look like 
a UI status bar. Your status bar should look something like this when 
you’re done:

Create the statusbar panel as follows:

1 Change the statusbar panel’s layout to GridLayout. Now, when you add 
the labels, they will be the same size, just like the buttons on the toolbar.

2 Add two Swing JLabel components to the statusbar panel as shown. 
Make sure they are contained by the statusbar panel.

3 Select the two labels and change their border properties to 
LoweredBevel to achieve a three dimensional look seen in many status 
bars.



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-17

S t e p  9 :  C o n v e r t i n g  t o  p o r t a b l e  l a y o u t s

4 Select the GridLayout object for statusbar in the component tree and 
change the hgap property to 2 to widen the raised area between the 
status bars. This step is purely a matter of taste and not a necessity.

Important In JBuilder, you cannot edit the layout properties for a <default layout>. 
If you want to modify the properties for a container’s layout manager, 
you must specify an explicit layout manager. Then its properties are 
accessible in the Inspector.

5 Select the left label and change the default value in the left label’s text 
property to Status:.

6 Select the right label and delete the default value in the right label’s text 
property and press Enter.

7 Save your work and run the application.

Your application should look something like this:

8 Exit the application and close the message pane.

At this point, you have completed the first phase of the UI design work, 
adding all the components to the containers, starting with the larger 
outside containers and working down to the smallest components inside 
these containers.

Step 9: Converting to portable layouts
In this step, you’ll begin working from the inside out, converting panels to 
more portable layouts. Remember, you don’t want to leave anything in 
XYLayout or null due to their absolute positioning of components and lack 
of portability.

Now, change the layout for the top panel that contains the toolbars and 
align the toolbars to the left.



10-18 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  9 :  C o n v e r t i n g  t o  p o r t a b l e  l a y o u t s

1 Select the top panel and change the layout property in the Inspector to 
FlowLayout. The two panels in the top panel, left_toolbar and 
right_toolbar, now flow from left to right.

2 Select the top panel’s FlowLayout object in the component tree and 
change the alignment property to Left. Usually toolbars are aligned left 
in UI design.

3 Save and run your application and notice that the toolbars are 
left-aligned in the UI.

Now your top panel should look similar to this:

4 Exit the application and return to the designer.

5 Select the top panel in the designer and make it narrower than the 
buttons to see what FlowLayout does when the panel is narrower. Notice 
that the Help button on the right_toolbar panel moves to the second 
row. This is FlowLayout behavior. Adjust the panel until both toolbars 
are back on the top row.

Finally, change the layout for contentPane to BorderLayout.

6 Select contentPane in the component tree and change XYLayout to 
BorderLayout. It should assign the top panel to the North, middle panel to 
the Center, and statusbar to the South. If this doesn’t happen, select 
each panel and correct its constraints property in the Inspector.

7 Save your work and run the application.

Your UI components should all be in their correct places now. If your 
design is too large or too small, return to the UI designer, select this in the 
component tree and resize the frame.

Try resizing the application window now that XYLayout has been replaced 
with other more portable layouts. Note the behavior of BorderLayout: when 
you enlarge the window, the center area gets as much space as possible 



T u t o r i a l :  C r e a t i n g  a  U I  w i t h  n e s t e d  l a y o u t s 10-19

S t e p  1 0 :  C o m p l e t i n g  y o u r  l a y o u t

and the other areas, in this case North and South, expand enough to fill 
the remaining areas. North and South can only expand horizontally to fill 
the space and can’t grow vertically in height. This becomes a problem 
when you make the window narrower.

Now, make the window very narrow and observe the top panel 
containing the toolbars. The top panel can’t resize due to the number of 
buttons filling it, so the buttons are hidden.

This occurs because the buttons are at their minimum size for displaying 
the text and BorderLayout North can only stretch horizontally not vertically. 
Therefore, the buttons can’t wrap. From this example, you can see that 
BorderLayout is not the best choice for more complicated layouts with 
toolbars. It’s best used when you only have several components that need 
to fill Center, North, South, East, and West. On the other hand, 
GridBagLayout, in combination with other layout managers, is ideal for 
more complicated UI designs and well worth learning.

Step 10: Completing your layout
Everything is finished except for a little cleanup and polish. If you did 
change the color of any panels, now is your opportunity to change them 
back to their original gray.

1 Select all the panels in your design using multiple selection in the 
component tree.

2 Double-click the background property in the Inspector and select light 
gray (RGB value 192, 192, 192). Don’t worry about its appearance in the 
designer at this point. The bevels create a lot of white space. You might 
also want to select all the buttons and make their backgrounds the same 
as the panels.

Next, eliminate any unwanted borders.

3 Select all the panels in your design for which you want to remove the 
borders and change the border property to <none>.



10-20 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

S t e p  1 0 :  C o m p l e t i n g  y o u r  l a y o u t

This is purely your choice and may be influenced by which look and 
feel you decide to use. You can even customize a border by clicking the 
ellipsis button to the right of the border property to open the Border 
Property Editor.

In this tutorial all the borders have been removed except for the 
LoweredBevel border on the status bar labels.

Now, the UI is complete except for any other finishing touches you might 
want to add. This is approximately how your final design should look:

And that’s all there is to it! While it seems slow in the learning phase, once 
you become familiar with the different layouts, you’ll be able to plan and 
implement layouts more quickly.

It is easy to see that using multiple levels of panels with only the easier 
layouts can actually be pretty tedious and complicated. A better 
alternative is to take the time to learn GridBagLayout. In the end, all your UI 
designs will be much simpler and better controlled. You will still use 
nested layouts, but only one or two levels deep. GridBagLayout will control 
the rest of the layout behavior.

For an in-depth tutorial on GridBagLayout, see Chapter 11, “GridBagLayout 
tutorial.”

To learn how to write code that responds to user events in your 
application, see the online tutorial called “Building a Java text editor.”



G r i d B a g L a y o u t  t u t o r i a l 11-1

C h a p t e r

11
Chapter11GridBagLayout tutorial

Introduction
This is an in depth tutorial that explains GridBagLayout, and demonstrates 
how to create a GridBagLayout UI container using the JBuilder visual design 
tools. The goal of this tutorial is to give you a thorough understanding of 
how GridBagLayout works in JBuilder and to show you how to simplify 
GridBagLayout design. While the information here is aimed at working with 
JBuilder, much of it also applies to working with GridBagLayout in general.

The images in this tutorial were captured on the Windows platform. This 
does not, however, affect the validity of the tutorial for other platforms, as 
the basic functionality of JBuilder and GridBagLayout is the same on all 
platforms.

Important This tutorial uses XYLayout for prototyping the UI. If you use JBuilder 
Personal, substitute null layout wherever XYLayout is mentioned.

The “GridBagLayout tutorial” is divided into three sections:

• “Part 1: About GridBagLayout” on page 11-2

Part 1 of the tutorial explains conceptually what the GridBagLayout 
manager and the GridBagConstraints objects are. It gives you a detailed 
description of each constraint and explains how to set the constraint in 
the JBuilder visual designer. This part also explains why GridBagLayout 
can be so complicated and shows you how you can simplify 
GridBagLayout design by using the designer.

• “Part 2: Creating a GridBagLayout in JBuilder” on page 11-16

Part 2 walks you through the steps of creating a typical dialog box 
using GridBagLayout. It demonstrates how to plan the UI before you start 



11-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

and gives you examples of the differences in behavior of the container 
with different layout choices.

• “Part 3: Tips and techniques” on page 11-39

Part 3 is a collection of various tips and techniques for working with 
GridBagLayout in JBuilder. In this section, each constraint’s behavior is 
examined separately, with examples that show you what to expect 
when modifying it in the designer. A code sample generated by 
JBuilder as a result of creating the UI example in Part 2 is included. This 
part also explains how to change existing GridBagLayout code to be 
visually designable in JBuilder.

Part 3 also includes:

“GridBagConstraints” on page 11-62

An overview of the GridBagConstraints and their values.

“Examples of weight constraints” on page 11-67

Illustrated examples of weight constraints applied in different ways.

Part 1: About GridBagLayout
XYLayout is a feature of

JBuilder SE and
Enterprise. If you use

JBuilder Personal,
substitute null layout

wherever XYLayout is
specified.

Overview of GridBagLayout

GridBagLayout is a complex layout manager that requires some study and 
practice to understand it, but once it is mastered, it is extremely useful. 
JBuilder has added special features to the visual design tools that make 
GridBagLayout much easier to design and control, such as a 
GridBagConstraints Editor, a visual grid, drag-and-drop editing, and a 
special context menu for components in a GridBagLayout container.

There are two approaches you can take to designing GridBagLayout in the 
visual designer. You can design it from scratch by adding components to a 
GridBagLayout panel, or you can prototype the panel in the designer using 
another layout first, such as XYLayout or null layout, then convert it to 
GridBagLayout when you have all the components arranged and sized the 
way you want. This method can speed up your design work substantially 
and is the one which is the focus of this tutorial.

Whichever method you use, you should take advantage of using nested 
panels to group the components. Use panels to define the major areas of 
the GridBagLayout container. This greatly simplifies your GridBagLayout 
design giving you fewer cells in the grid and fewer components that need 
GridBagConstraints.

For more information on using nested panels, see “Using nested panels 
and layouts” on page 8-51.



G r i d B a g L a y o u t  t u t o r i a l 11-3

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

What is GridBagLayout?

In Java, you create a user interface by adding components to a Container 
object, such as Frame or a Panel, and using a layout manager to control the 
size and placement of the objects within the container. By default, every 
container object has a layout manager object that controls its layout.

GridBagLayout is an extremely flexible and powerful layout manager that 
implements the interface LayoutManager2 and knows where and how to 
layout objects based on object GridBagConstraints. It places components 
horizontally and vertically on a dynamic rectangular grid, but provides 
more control in the size and location of the components than GridLayout (in 
which the grid cells are of equal size, filled with one component each).

Unlike GridLayout the components in GridBagLayout do not have to be the 
same size and they can span multiple cells. Also, the columns and rows in 
the grid do not have to be the same width or height.

GridBagLayout controls the placement of its components based on the 
values in each component’s GridBagConstraints object, the component’s 
minimum size, and the container’s preferred size.

Figure 11.1 Example GridBagLayout

The key advantage to GridBagLayout, as shown in this example, is the ability 
of the components to grow or shrink reliably. This feature provides 
greater application portability between platforms, computer resolutions, 
and localization of products where string lengths change.

In the example above, some of the buttons occupy only one cell of the grid 
(one row, one column), while others span multiple cells or rows and 
columns. You can see the exact number of cells each component occupies 
in the designer when you display the grid for a GridBagLayout container. 
The difference between a cell and the area each component occupies is 
explained in the next topic “What is the component’s display area?”.



11-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

What is the component’s display area?

The definition of a grid cell is the same for GridBagLayout as it is for 
GridLayout: a cell is one column wide by one row deep. However, unlike 
GridLayout where all cells are equal in size, GridBagLayout cells can be 
different heights and widths, and a component can occupy more than one 
cell horizontally and vertically.

This area occupied by a component is called its display area, and it is 
specified with the component’s GridBagConstraints gridwidth and 
gridheight (number of horizontal and vertical cells in the display area).

For example, in the following GridBagLayout container, component 4 spans 
one cell horizontally (column) and two cells vertically (rows). Therefore, 
its display area consists of two cells.

Figure 11.2 Display area — one horizontal cell, two vertical cells

A component can completely fill up its display area, as with component 4 
in the example above, or it can be smaller than its display area.

For example, in the following GridBagLayout container, the display area for 
component 3 consists of nine cells, three horizontally and three vertically. 
However, the component is smaller than the display area because it has 
insets which create a barrier between the edges of the display area and the 
component.

Figure 11.3 Display area — three horizontal cells, three vertical cells

Even though this component has both horizontal and vertical fill 
constraints, since it also has insets on all four sides of the component 
(represented by the double blue nibs on each side of the display area), 



G r i d B a g L a y o u t  t u t o r i a l 11-5

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

these take precedence over the fill constraints. The result is that the 
component only fills the display area up to the insets.

If you try to make the component larger than its current display area, 
GridBagLayout increases the size of the cells in the display area to 
accommodate the new size of the component, plus leaving space for the 
insets.

A component can also be smaller than its display area when there are no 
insets, as with component “6” in the following example.

Figure 11.4 Component smaller that its display area

Even though the display area is only one cell, there are no constraints that 
enlarge the component beyond its minimum size. In this case, the width of 
the display area is determined by the larger components above it in the 
same column. Component 6 is displayed at its minimum size, and since it 
is smaller than its display area, it is anchored at the west edge of the 
display area with an anchor constraint.

As you can see, GridBagConstraints play a critical role in GridBagLayout. 
We’ll look at these constraints in detail in the next topic, “What are 
GridBagConstraints”, and in “Part 3: Tips and techniques” on page 11-39.

What are GridBagConstraints?

GridBagLayout uses a GridBagConstraints object to specify the layout 
information for each component in a GridBagLayout container. Since there is 
a one-to-one relationship between each component and GridBagConstraints 
object, you need to customize the GridBagConstraints object for each of the 
container’s components.

GridBagConstraints give you control over the following:

• The absolute or relative position of each component.

• The absolute or relative size of each component.

• The number of cells each component spans.

• How the unused space in a component’s display area gets filled.

• The amount of internal and external padding for each component.



11-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

• How much weight is assigned to each component to control which 
components utilize any extra available space. This controls the 
component’s behavior when resizing the container, or displaying the 
UI on different platforms.

GridBagLayout components have the following constraints:

• anchor

• fill

• gridx, gridy

• gridwidth, gridheight

• insets

• ipadx, ipady

• weightx, weighty

See also

• java.awt.GridBagConstraints.html at 
http://java.sun.com/j2se/1.3/docs/api/java/awt/GridBagConstraints.html

• java.awt.GridBagLayout.html at 
http://java.sun.com/j2se/1.3/docs/api/java/awt/GridBagLayout.html

Why is GridBagLayout so complicated?

When you first start modifying the constraints in a GridBagLayout, you can 
often have unexpected results that can seem dramatic and difficult to 
understand. The difficult thing about learning how to assign constraints to 
components in the GridBagLayout container is knowing what effect the 
change to one component has on the other components in the grid. The 
constraint behavior for one component depends on the other components 
in the container and their constraints. For example, if you decide to 
remove weight values from a component, the position of the other 
components in the grid might change relative to this.

The two examples below show the effect of changing the weighty 
constraint value of Area 4 from 1.0 to 0.0. Notice how the row collapses, 
and the bottom row expands.



G r i d B a g L a y o u t  t u t o r i a l 11-7

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

Figure 11.5 Area 4 weighty constraint value is 1.0:

Figure 11.6 Area 4 weighty constraint value changed to 0.0:

JBuilder shortens the GridBagLayout learning curve time by allowing you to 
see the effects of changes immediately in a visual design surface.

Why use GridBagLayout?

GridBagLayout gives you complete control over how components behave 
and how they are displayed when the container is resized or viewed on 
different platforms. This ensures that your distributed application will 
look and behave properly on any supported platform.

Most books and tutorials tend to skip an in-depth discussion of 
GridBagLayout, and many recommend avoiding using it altogether. It is 
possible to accomplish much of your UI design work by using a 
combination of other layouts.

If you have tried to use GridBagLayout before now, you’ve discovered that it 
is very complex and initially difficult to work with. Getting the design to 
work exactly the way you want involves tedious trial and error, 
modifying the constraints in the code then compiling and running to see if 
it works. Until you fully understand the behavior of the individual 
constraints and the effect their modifications will have on the design, 
GridBagLayout can be extremely frustrating.



11-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

As with any complex subject, the easiest way to work with it is to simplify 
it

Simplifying GridBagLayout

JBuilder gives you a much simpler way to do GridBagLayout design work, 
making it possible for even the beginning Java programmer to use. By 
using a combination of the visual designer, JBuilder’s XYLayout or null 
layout, and JBuilder’s excellent layout conversion ability, all of the initial 
layout and design code is generated automatically, taking most of the 
guesswork out and leaving only minor adjustments to do.

Whether you are new to Java or are an advanced programmer, the 
suggestions below can significantly improve your experience with 
GridBagLayout and speed up your UI design work:

• Sketch your design on paper first

• Use nested panels and layouts

• Use the JBuilder visual designer

• Prototype your UI in XYLayout

Sketch your design on paper first
Always start your GridBagLayout design on paper. Take the time to sketch 
the final design and decide where it would be best to include nested 
panels with other layouts. Nested panels are essential for simplifying the 
design and giving you absolute control over the placement of the 
components.

For example, if you want a toolbar in your GridBagLayout design, use a 
nested GridLayout panel to contain the buttons, rather than placing the 
buttons directly into the GridBagLayout container. Try to arrange your 
design so you have a minimum number of panels and components for the 
GridBagLayout container to control.

At first, it may not be obvious how important it is to plan ahead on paper. 
But, if you start prototyping without a plan, you soon discover how much 
time you would have saved if you had logically thought it through before 
beginning. Eventually, your knowledge and skill with the various layout 
managers will become advanced enough that you may be able to skip this 
step and just begin your prototype in the designer. But, in the beginning, it 
is well worth the time and extra effort it takes to plan it out. See “Step 1: 
Design the layout structure” on page 11-17.

Difficulties adding components after conversion to GridBagLayout
While planning the layout before you start is good advice for any UI 
design, it is especially important for GridBagLayout. When you add 



G r i d B a g L a y o u t  t u t o r i a l 11-9

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

components to an existing GridBagLayout container, or move existing ones, 
unpredictable results may surprise and overwhelm you. If you can 
anticipate the final layout requirements before you start, you can 
minimize the amount of final adjustments needed after you convert the 
layout from XYLayout to GridBagLayout. See “Prototype your UI in 
XYLayout” on page 11-14.

The following example demonstrates what can happen when you add a 
component to a panel after converting it from XYLayout to GridBagLayout. 
This example uses the same layout design you’re going to create in Part 2 
of the tutorial, and demonstrates adding the first of three buttons at the 
bottom of the design. However, in this instance, none of the components 
in the panel are grouped into nested panels, and the conversion to 
GridBagLayout was done before trying to add the buttons at the bottom. You 
can easily see how hard it is to control the location of just the first button!

Notice in the first two images below the difficulty GridBagLayout has 
figuring out where to put the new button. Even though the button is 
drawn in the middle of the bottom row, GridBagLayout snaps it into the first 
column.

Figure 11.7 Drawing the new button in the middle

Figure 11.8 GridBagLayout snaps the button to column 1 when it is dropped



11-10 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

In the next two images, the button is dragged back to the middle. 
GridBagLayout changes the number of columns in the layout as it tries to 
accommodate the new button location.

Notice that when the cursor is directly in over the middle line between the 
two columns, GridBagLayout snaps the button to the top. If you place the 
cursor on either side of the middle, the button will be snapped into an 
existing column, rather than creating a new one.

Figure 11.9 Dragging the new button back to the middle

Figure 11.10 GridBagLayout creates a new center column for the button

Unfortunately, since the components above are not placed into two 
separate panels, this alters the constraints (and size) of the other 
components because the components on the right now span two columns.

It’s obvious to see from these examples that adding the button while the 
UI was still in XYLayout instead would have enabled us to place it exactly 
where and how we wanted without affecting the preferred size and 
placement of the other components.

Note Actually, as you’ll see later, adding a panel across the bottom to contain 
the buttons gives you greater control over their placement in 
GridBagLayout.



G r i d B a g L a y o u t  t u t o r i a l 11-11

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

See also

• “Prototype your UI in XYLayout” on page 11-14.

Use nested panels and layouts
Most UI designs in Java use more than one type of layout to achieve the 
desired results. You can often get the best control by nesting multiple 
panels with different layouts in the main UI container. You can also nest 
panels within other panels to gain more control over the placement of 
components. By creating a composite design and using the appropriate 
layout manager for each panel, you can group and arrange components in 
a way that is both functional and portable.

While GridBagLayout can accommodate a complex grid, it behaves more 
successfully and predictably if you organize your components into 
smaller panels, nested inside the GridBagLayout container. These nested 
panels can use other layouts, including GridBagLayout, and can contain 
additional panels of components if necessary. This method has several 
advantages:

• It gives you more precise control over the placement and size of 
individual components because you can use more appropriate layouts 
for specific areas, such as toolbars.

• It minimizes the actual number of components being controlled by 
GridBagLayout, greatly simplifying the design.

• It reduces the chances of unexpected behavior when modifying 
constraints.

• It minimizes the need for further modifications after conversion to 
GridBagLayout.

Note It’s best to group components into nested panels if grouping can make it 
easier to keep the grid divided into fewer evenly placed cells. The fewer 
components you have in a GridBagLayout container, the easier it is to control 
placement of the components.

For example, in the UI design used for this tutorial, you can fit most of the 
components into two columns, except for the three buttons at the bottom.



11-12 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

Figure 11.11 UI design for GridBagLayout tutorial

Placing three buttons at the bottom of the panel increases the total number 
of columns, making the alignment of the other components trickier. Also, 
getting those three buttons to stay the same size in the middle of the 
dialog box when the container is resized is harder to achieve if they are 
separate components in the larger GridBagLayout panel.

If you choose to leave the buttons in the larger GridBagLayout panel, when 
you really stretch the container horizontally, the buttons at the bottom get 
further and further apart, rather than staying together in the center of the 
panel.

If, instead, you group the three buttons into one GridLayout panel, that 
panel can span two columns of the GridBagLayout. This makes it possible to 
have a total of two columns. This is much simpler for GridBagLayout to 
manage. Also, the placement of the buttons in the dialog box behave 
predictably when the container is resized, remaining together in the 
center.

Use the JBuilder visual designer
JBuilder’s visual design tools make the challenging, time-consuming and 
risky work of using GridBagLayout much simpler, faster, and safer:

• By using the designer to design your UI, you can do all the initial 
design work in XYLayout which lets you control exact placement and size 
of the components. When you finish the design work, you then switch 
the layout to GridBagLayout. JBuilder does all the work of calculating the 
constraint values of the components in the layout and automatically 
generates the code for you, greatly simplifying and speeding up the 
entire design process.

• The designer displays a visual grid to aid your GridBagLayout design 
work. This grid appears whenever you click on a component in a 
GridBagLayout, and lets you see individual cells and the relationship 
between the components and their cells. This grid can be turned on or 
off and hides when you click on a component in a different type of 
layout.



G r i d B a g L a y o u t  t u t o r i a l 11-13

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

Figure 11.12 Designer with the grid turned on:

• You can use drag-and-drop editing on the design surface to visually 
modify a component’s constraints. Each component in the GridBagLayout 
container displays a set of nibs for adjusting the size, location, insets, or 
padding of the component.

With the grid visible, this allows you to see exactly what is happening 
to the entire grid and its components when you drag a component or 
one of its nibs, as shown in the image above. The values are also 
immediately updated in the source code and in the GridBagConstraints 
Editor.

To turn the grid on in the designer, right-click a component in the 
GridBagLayout container and choose Show Grid.

Note Use of these sizing nibs is discussed in the “Tips and techniques” 
section under the individual constraints that use them.

• You can assign or modify all constraint values in the Constraints 
property editor if you prefer, which is accessible from the context menu 
on the design surface or from the Inspector. The GridBagConstraints 
Editor remains open while you adjust and apply constraints for more 
than one GridBagLayout component, as long as you just click on 
GridBagLayout components. This gives you the ability to experiment with 
minor adjustments and see the results immediately.

You can also modify constraint values directly in the source code 
because changes between the designer and the editor are always 
synchronized. Again, the results take effect immediately in the 
designer.

• JBuilder provides multiple levels of undo, making it easier and less 
risky to try out modifications. You can return to a previous state if 
unexpected things happen or if you don’t like the change. In the 
beginning stages of learning to design GridBagLayout, this inevitably 
happens.



11-14 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

• For each object you add to a GridBagLayout container using the designer, 
JBuilder creates a GridBagConstraints object that has a constructor which 
takes all eleven of its properties:

public GridBagConstraints(int gridx,
                          int gridy,
                          int gridwidth,
                          int gridheight,
                          double weightx,
                          double weighty,
                          int anchor,
                          int fill,
                          Insets insets,
                          int ipadx,
                           int ipady)

For example, if you add a button to a GridBagLayout panel called jPanel1, 
the following code is generated by JBuilder:

jPanel1.add(jButton1, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,
  GridBagConstraints.CENTER, GridBagConstraints.NONE, 
  new Insets(0, 0, 0, 0), 0, 0));

Prototype your UI in XYLayout
The main advantage to prototyping your UI design in JBuilder’s XYLayout 
is that this layout keeps components at the exact pixel location and size 
you create them. You also have numerous alignment options available on 
the component’s context menu for aligning multiple components: left, 
right, center, top, bottom, middle, same size horizontally or vertically, and 
equal spacing horizontally or vertically.

Using XYLayout, you can lay out your components exactly the way you 
want them to be, then convert the container to GridBagLayout, letting 
JBuilder calculate the grid cells and constraint values automatically. 
JBuilder does a good job of this conversion, but in many cases, you may 
want to fine-tune a few constraints to get the exact behavior you want. 
This is usually because of two factors:

• The conversion process may apply weight and fill constraints you don’t 
want on particular components, giving you undesirable behavior.

• The number of cells JBuilder decides are necessary is usually more than 
you would guess. If you are trying to center something that spans 
multiple cells, like a toolbar for example, you might need to adjust the 
number of columns or rows the component spans (gridwidth or 
gridheight).

Even so, the bulk of the work of coding GridBagLayout has already been 
done for you, greatly speeding up the entire process. As you become more 
familiar with how constraints affect component behavior, and with how 
JBuilder does the conversion from XYLayout to GridBagLayout, you can better 



G r i d B a g L a y o u t  t u t o r i a l 11-15

P a r t  1 :  A b o u t  G r i d B a g L a y o u t

anticipate what nested panels are necessary to make the design behave 
well.

Below are the basic work flow steps for using this design strategy:

1 Create the container that will ultimately be GridBagLayout. This can be 
the main UI container, or it can be a panel inside the UI container.

2 Change its layout to XYLayout, if necessary. The easiest way is to change 
the Layout property in the Inspector.

3 Add all the components to the container while it is still in XYLayout. Use 
nested panels to minimize the actual number of components being 
ultimately controlled by the GridBagLayout.

4 Get as close as possible to the finished layout design so the conversion 
to GridBagLayout is more successful. Take advantage of XYLayout’s 
alignment options on the context menu to fine-tune the placement, size, 
and alignment of the components.

5 When the UI is basically finished, convert the main container to 
GridBagLayout.

Important Generally, when you use nested panels in a layout, you would convert 
the inner panels to their intended layout first, working outward to 
convert each level of containers, then converting the main container 
last. However, the strategy is different for GridBagLayout.

When converting a container from XYLayout to GridBagLayout, you should 
leave the inner panels in XYLayout until you have converted the outer 
container to GridBagLayout. This is because during the conversion 
process, JBuilder determines the number of columns and rows to create 
in the grid based on the preferred width and height of the components 
at the time of conversion. The conversion process honors the preferred 
width and height of the XYLayout panel. It determines the number of 
columns to create and the insets needed based on those dimensions.

For example, if you are trying, as in our example UI, to center a 
GridLayout toolbar panel across the bottom of the GridBagLayout 
container, converting that panel of buttons to GridLayout first shrinks the 
panel to fit the buttons. Depending on the width of the components in 
the rest of the GridBagLayout container, the conversion might not make 
the GridLayout panel span all the columns in the GridBagLayout.

By leaving the panel extended across the entire width of the container 
in XYLayout during the conversion to GridBagLayout, JBuilder knows it 
needs to center the panel and span it across all the columns in the 
container. The toolbar panel is well behaved inside the GridBagLayout 
container after you convert it to GridLayout.

6 Convert the inner panels to their intended layouts.



11-16 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

7 Make minor adjustments to constraints if needed to perfect your 
design. This mainly involves changing insets (for example matching 
left and right insets for components you want centered in the cell), and 
making sure the fill and weight constraints were applied the way you 
want.

For tips on fine-tuning your design after you have converted to 
GridBagLayout, see “Part 3: Tips and techniques” on page 11-39.

8 Save and run your program. Resize the frame in different ways to check 
for any unwanted behavior. If necessary, make additional adjustments 
until you are satisfied with the results.

Part 2: Creating a GridBagLayout in JBuilder
XYLayout is a feature of

JBuilder SE and
Enterprise. If you use

JBuilder Personal,
substitute null layout

wherever XYLayout is
specified.

About the design

This part of the GridBagLayout tutorial takes you through each step of 
designing a GridBagLayout container in JBuilder. You will create the 
following typical dialog box that has several controls on it and a group of 
three buttons centered at the bottom.

Figure 11.13 GridBagLayout tutorial UI

The reason we decided upon this particular design is precisely because of 
the complications introduced by adding the odd number of buttons at the 
bottom. Also, this is a situation frequently encountered.

As you work through this part of the tutorial, please keep in mind that 
due to individual differences in drawing and arranging the components, 
your design may not exactly look like, nor behave like ours. But, it should 
be similar enough to allow you to achieve the desired results.

• Steps 1-3 of this tutorial involve creating the layout in the designer.

• Steps 4-6 walk you through converting it to GridBagLayout.

• Step 7 shows you how to adjust the individual constraints to fine tune 
your design and the reasoning behind these modifications.



G r i d B a g L a y o u t  t u t o r i a l 11-17

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Take your time, and don’t be afraid to experiment. The designer makes it 
easy to try out different things and immediately see the effects. Just save 
your Frame1.java file before you try anything so you can Undo back to that 
point after you’re done.

Step 1: Design the layout structure

The first step in designing your UI is to sketch the design on paper to plan 
the container structure and layouts. See “Sketch your design on paper 
first” on page 11-8.

We have already done this step below.

Figure 11.14 Sketch of proposed design

In our sketch, we grouped the components into three panels for 
GridBagLayout to control: two equal sized panels to hold the components in 
the main part of the UI and one panel across the bottom for three buttons. 
We did this for two reasons:

• The components in the upper part fit conveniently into two columns. 
Grouping them into two panels means that the conversion to 
GridBagLayout creates only two columns with the bottom panel spanning 
the two columns and centering easily in the GridBagLayout panel.

• This design succeeds in trimming our total number of GridBagLayout 
components down to three, making the layout much simpler to control.

The images below demonstrate how JBuilder would handle the 
conversion using this arrangement. Notice that the grid displays only two 
columns and two rows in the designer. (The background color of the 
panels has been changed in this example to make it more obvious how 
JBuilder decided where the divisions should be.)



11-18 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Figure 11.15 Conversion to GridBagLayout by designer

Figure 11.16 Runtime, before resizing

Figure 11.17 Runtime, after resizing

As shown in the next example, you could also use one panel for the three 
buttons at the bottom and let the GridBagLayout control all the other 
components separately, rather than nesting them inside panels. This can 
work, as long as you are very careful to make all the upper components 
the same width on each side. However, GridBagLayout creates more 



G r i d B a g L a y o u t  t u t o r i a l 11-19

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

columns based on where each component ends, making a much more 
complicated design that is more difficult to control.

Notice that the conversion created six columns this time. (Again, the 
background color has been changed on the transparent components so 
you can see where they end, illustrating how the columns and rows were 
calculated.)

Figure 11.18 Conversion results without nested panels in upper columns

Finally, if you don’t use any inner panels to group components, 
GridBagLayout’s job is much harder. In addition to creating even more cells, 
it makes a determination as to how many of these cells each component 
uses for a display area and which components get weight constraints. The 
more components in the design, the greater the potential for 
misinterpretation of your original intentions.

Figure 11.19 Conversion results without any nested inner panels



11-20 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

The images below show how a GridBagLayout panel with no inner panels 
behaves when it is resized at runtime:

Figure 11.20 GridBagLayout, no inner panels, before resizing

Figure 11.21 GridBagLayout, no inner panels, after resizing

As you can see, the components don’t do what we want. Without 
grouping them into panels, it’s practically impossible to control their 
placement and size during resizing.



G r i d B a g L a y o u t  t u t o r i a l 11-21

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Also, without any panels, if the components are not aligned very carefully 
and evenly, you could potentially end up with a grid that looks this:

Figure 11.22 Possible results if no inner panels, and components not carefully aligned

When your grid becomes larger than the Frame, it can be an indication that 
you have too many disparate objects for GridBagLayout to control, and the 
decisions it makes as to weight constraints, gridwidth, gridheight and 
anchor, cause the design to require a larger grid than the container can 
hold. When this happens, the display area of the objects are off the edge of 
the Frame.

If this does happen to you during GridBagLayout conversion, you may not 
want to waste time trying to correct it. It could take hours of frustration to 
clean it up by modifying constraints, and you still might not succeed 
satisfactorily.

Just do an Undo (Ctrl+Z) to reverse the conversion, returning to XYLayout. 
Readjust the design in XYLayout, then try converting it again.

For a cleaner conversion to GridBagLayout, try these changes while in 
XYLayout:

• Group more of the components into nested panels if possible.

• Make your design more symmetrical. Match up the beginning and 
ending of as many of the components as possible to minimize the 
number of cells required in the grid.

If you do decide to go forward when it is in this state, try enlarging the 
frame wide enough to display all the cells (especially the columns) so you 
can see how many there actually are in the design. That way you can 
modify how many cells each component is supposed to span, reducing the 
total number of cells in the grid. Then you can correct the gridx and gridy 
locations for each display area, as well as where the components are 
anchored in that display area. Also, you may want to try removing all 
weight constraints until the other constraints are fixed.

To avoid these difficulties, use nested panels wisely in your design.



11-22 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

It might occur to you that if you use four panels (three inside one 
GridBagLayout panel), it would work just as well to use BorderLayout for the 
main panel instead of GridBagLayout. The image below demonstrates how 
differently BorderLayout handles the components from GridBagLayout.

Figure 11.23 Results if using BorderLayout instead of GridBagLayout

Step 2: Create a project for this tutorial

JBuilder uses projects to organize associated files into folders.

To start a new project,

1 Choose File|New Project to open the Project wizard.

2 Modify the path and project name if you like, then click Finish.

3 Choose File|New to access the object gallery and select the General tab. 
Click on the Application icon on the General tab in the object gallery to 
open the Application wizard.

4 Select the Application icon and either double-click it or press Enter.

5 Accept all defaults and click Finish.

6 Save the project: choose File|Save Project.

Step 3: Add the components to the containers

Let’s proceed with creating the UI design that uses three nested panels 
inside a main GridBagLayout panel to group the components.

Tip Since we will sometimes be working with more than one component, let’s 
review how to handle multiple components in the designer.

• If you have any trouble determining where you are on the design 
surface, read the component’s name in the status bar. The status bar 
tells you exactly which component your arrow hovers over on the 
design surface.



G r i d B a g L a y o u t  t u t o r i a l 11-23

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

• If you have trouble selecting a component on the design surface, you 
can always select it in the component tree instead.

• You can select multiple components in either the component tree or on 
the design surface by holding down the Ctrl key as you click each 
component.

• When modifying the alignment for multiple components, the first 
component selected is the one to which the others match.

• To release a multiple selection, click on any unselected component in 
the designer or in the component tree.

• To display the right-click context menu for a panel containing multiple 
components, select the panel, place your cursor over the middle nib 
where a four-sided arrow cursor appears, then right-click. If you have 
difficulty selecting the panel in the designer, select it in the component 
tree, then move the cursor over the middle nib in the designer.

Figure 11.24 Select middle nib

Add the main panel to the UI frame
1 Select the Frame file in your project (Frame1.java) and click the Design tab 

to open the UI designer. The this component is the parent container of 
the UI. Its default layout, which you won’t change here, is BorderLayout.

2 Click the Swing Containers tab on the component palette and select a 
JPanel component. Click in the center of the frame to add this panel. 
This places the panel (jPanel1) in the center and fills the entire frame.

3 Select jPanel1 in the component tree or on the design surface. Select the 
Layout property in the Inspector and change the layout to XYLayout.

Figure 11.25 Change layout in Inspector



11-24 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Create the left panel and add its components
1 Add a jPanel component from the Swing Containers tab to the upper 

left area of jPanel1. Stretch it to fit almost halfway across and about two 
thirds down, leaving some margin between it and the left edge of 
jPanel1 as shown below. This is jPanel2.

Figure 11.26 GridBagLayout tutorial, jPanel2

2 Change the layout for jPanel2 to XYLayout. You can change the 
background color temporarily if you want to make it easier to see.

3 Add the following components from the Swing tab, starting in the 
upper left corner of jPanel2: jLabel, jList, jButton, and jCheckbox. You 
may need to stretch the jList component to enlarge it after adding it to 
the panel.

Figure 11.27 GridBagLayout tutorial, jPanel2 components

4 Change the text property in the Inspector for these components as 
follows:

jLabel1 = “Sorted Columns” 
jButton1 = “Remove from Sort” 
jCheckbox1 = “Descending”



G r i d B a g L a y o u t  t u t o r i a l 11-25

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Figure 11.28 Text property

5 Match the font for jLabel1, jButton1, and jCheckbox1:

a Hold down the Ctrl key, then select jLabel1, jButton1, and jCheckbox1 in 
the component tree.

b Click on the font property in the Inspector.

c Click the ellipsis button to bring up the Font dialog.

d Change the font from 12 pts to 11 pts if it’s not already 11 pts, then 
click OK.

Figure 11.29 Font dialog

Even up the component sizes and alignment

1 Align the components using the XYLayout context menu. Hold down the 
Ctrl key and click on jLabel1, jList1, jButton1, and jCheckbox1 on the 
design surface.

Tip When your cursor hovers over a component on the design surface, the 
name of the component appears in the status bar.

2 With the cursor still over one of the selected components, right-click on 
the design surface to bring up the context menu and choose Align Left.



11-26 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Figure 11.30 Align left

3 Now make the jLabel1, jButton1, and jCheckbox1 the same width as 
jList1:

a Holding down the Ctrl key, select all four components, starting with 
jList1.

b Right-click over one of the selected components and choose Same 
Size Horizontal.

Since jList1 was the first component selected in the group, the other 
components match its width.

Note While it’s actually not necessary to make the components the same 
width, it is preferable in this case because it simplifies the grid created 
during the conversion to GridBagLayout. This decreases the number of 
columns generated for GridBagLayout, as demonstrated earlier in “Step 1: 
Design the layout structure” on page 11-17.

Tip For best results, when laying out components in XYLayout for conversion 
to GridBagLayout, you should try to match the start and end of 
components evenly. Wherever possible, try to make the components 
conform more to an even grid design, rather than a stair-step design.

When the end of a component on one row overlaps the start of another 
component on a different row, GridBagLayout has a more difficult time 
calculating how many cells to create, which cells should have weights, 
how many cells the component should span, and how to apply insets 
and padding. The results are often not quite right, and it can take 
additional time to clean up.

Create the right panel and add its components
Below is a quick way to create the right panel, since it is pretty much 
identical to the existing one.

1 Right-click on jPanel2 in the designer and choose Copy from the context 
menu.



G r i d B a g L a y o u t  t u t o r i a l 11-27

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

2 Place the cursor to the right of jPanel2 in the designer, approximately at 
the location you want the upper-left corner of jPanel3 to appear.

3 Right-click and choose Paste. A new panel called jPanel3 is created, 
containing jLabel2, jList2, jButton2, and jCheckbox2.

4 Change the text property values for jLabel2, jButton2, and jCheckbox2 as 
follows:

jLabel2 = “Available Columns” 
jButton2 = “Add to Sort” 
jCheckbox2 = “Case Sensitive”

5 Now lets align the two panels vertically. Hold down the Ctrl key and 
select jPanel2 first, then jPanel3. Right-click over one of the selected 
panels in the designer and choose Align Top from the context menu.

Create the bottom panel and add its components
1 Add the final panel, jPanel4. Drag a new jPanel component across the 

entire width of jPanel1 at the bottom, roughly aligning its left edge with 
the left edge of jPanel2 and its right edge with right edge of jPanel3.

Figure 11.31 Draw bottom panel

2 Right-click jPanel4 and choose Align Center.

3 Drop three jButton components into jPanel4.

4 Change the font for these buttons to match the other components.

Figure 11.32 GridBagLayout tutorial, add button panel

Note Since the default layout for a jPanel is FlowLayout, you can take 
advantage of this temporarily to add the buttons to the panel. As you 
drop the buttons into a FlowLayout panel, the layout manager centers the 
buttons in the panel with an even horizontal distance between them. 
You can then go directly to GridLayout without needing to use XYLayout

5 Change the text property for each of the three buttons to display OK, 
Cancel, and Help, in that order. The layout manager adjusts the width 



11-28 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

of the buttons to fit the text. Don’t bother with resizing or positioning 
them, because when you convert this panel to GridLayout, the buttons 
become the same size, height, and width.

Congratulations! You’re all done with the initial layout. Save your file 
before proceeding.

Step 4: Convert the outer panel to GridBagLayout

You’re ready to convert jPanel1 to GridBagLayout.

1 First, do a final check to make sure all three panels are aligned well, and 
that there is a nice amount of space between the inner panels and the 
edges of jPanel1.

Tip For best results, don’t crowd the components in their containers, 
otherwise you may have a mismatch between the collective minimum 
or preferred size of the components and the minimum or preferred size 
of the containers, including the Frame.

2 Select jPanel1 and change its layout property to GridBagLayout. This 
should result in very little visible change to your layout, especially 
since you grouped the components nicely into three panels that are 
easy for the GridBagLayout manager to manage.

If you select one of the panels inside the GridBagLayout container, like 
jPanel2, you should see a grid of only two columns and two rows, as 
shown below:

Figure 11.33 Columns after conversion

Step 5: Convert the upper panels to GridBagLayout

In this design, it really doesn’t make a difference whether you convert the 
main container to GridBagLayout first or these two panels. Since the 
intended layout for jPanel2 and jPanel3 is GridBagLayout, the size of the 
panels does not change when they are converted (unlike changing to 
GridLayout or FlowLayout which resize to fit their components.)



G r i d B a g L a y o u t  t u t o r i a l 11-29

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

To change these two panels to GridBagLayout:

1 First, make sure the alignment of the components in these panels is as 
clean and as simple as possible (the goal being to minimize the number 
of columns needed for the grid).

2 Select both jPanel2 and jPanel3 and change their layouts to 
GridBagLayout.

You should see little difference in these panels after you convert them to 
GridBagLayout, although you might lose some of the margin, or gap, around 
the outside of the two panels.

Don’t worry if things are not perfect yet. We’ll make final adjustments in 
Step 7.

Step 6: Convert the lower panel to GridLayout

The final conversion is to the bottom panel:

1 Select jPanel4 and change its layout to GridLayout.

Note Since jPanel4 was left in FlowLayout during jPanel1’s GridBagLayout 
conversion, and since it was stretched across the entire width of jPanel1, 
it should have stayed nicely centered in the container after converting 
to GridBagLayout, spanning all columns. JBuilder assumes for conversion 
purposes that jPanel1’s preferred size is the size it was in XYLayout and 
assigns component constraints during the conversion based on this 
pixel size (for example, by giving it a gridwidth value equal to the 
number of columns generated during the conversion or its ipadx value.)

Now, as you change the layout to GridLayout, the panel stays the same 
width as it was in XYLayout, but notice that the buttons expand to fill the 
panel, and there is no gap between them. Also, the panel is larger than 
necessary. We’ll fix these things in Step 7, where we’ll make minor 
adjustments to the constraints for all the components.

2 Save your file now before you start making modifications.

Step 7: Make final adjustments

Rather than just give you the constraint values that make this UI design 
work, we’re going to examine each component separately to show why 
we made the decisions we did. This approach should give you a much 
better understanding of how the constraints affect the components, cells, 
and other components.

One thing to keep in mind as we continue is that all the discussion about 
how the constraints affect the components during resizing is relevant only 
if at least one component has weightx or weighty constraints. In fact, it is 



11-30 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

unlikely that you would ever create an outer GridBagLayout container 
without using weight constraints. When none of the components have 
weight, resizing has no affect on the placement of the components. All the 
components clump at their minimum or preferred size in the center of the 
GridBagLayout panel and any extra space given to the container by 
enlarging it gets put between the outside edges of the components and the 
edge of their container.

Another important point is that there is more than one combination of 
constraint values that can accomplish the same results. For example, as 
with the GridLayout panel below, to keep it centered and a consistent size at 
the bottom of the GridBagLayout container, you can use insets, anchor, 
padding, or a combination of these.

Most of the modifications in the rest of this section of the tutorial are made 
in the GridBagConstraints Editor.

Figure 11.34 GridBagConstraints Editor

To open the GridBagConstraints Editor,

1 Select a component that is inside a GridBagLayout container. If the 
component is a panel containing other components, select it, then move 
the cursor over the middle nib where a four-headed arrow appears.

Note You can’t bring up the GridBagConstraints Editor for jPanel1 because 
it’s a component inside a BorderLayout container. You can only bring up 
the GridBagConstraints Editor for components inside a GridBagLayout 
container, such as jPanel2 or jPanel3.

2 Right-click and choose Constraints from the context menu.



G r i d B a g L a y o u t  t u t o r i a l 11-31

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

After finishing this tutorial, do some experimentation with this UI. Open 
the GridBagConstraints Editor and try out different constraint values to 
see what happens.

Let’s continue by fixing the GridLayout panel (jPanel4) first.

GridLayout panel
As soon as you converted jPanel4 to GridLayout, the buttons inside it 
expanded to completely fill the panel with no gaps. Let’s first put a little 
gap between the buttons. It’s just a matter of setting a value for the hgap 
property for the GridLayout itself.

To change the horizontal gap value,

1 Click gridLayout1 in the component tree immediately below the jPanel4 
node.

2 Click gridLayout1’s hgap property in the Inspector and enter a pixel value 
of 6, then press Enter.

Next, the buttons need to be smaller. Since this is a GridLayout, the buttons 
fill up the grid, and if you enlarge the Frame, the buttons also expand, as 
demonstrated below.

Figure 11.35 GridLayout with fill on before resizing

Figure 11.36 GridLayout with fill on after resizing



11-32 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

This is the expected behavior of GridLayout: the components it contains fill 
up the panel, no matter what size it is (honoring any values specified for 
horizontal and vertical gap surrounding the buttons.)

Therefore, to control the size of the buttons in the grid, you must restrict 
the size of the GridLayout panel itself, using its GridBagConstraints.

fill
Select jPanel4 in the component tree, then click the ellipsis button for the 
constraints property in the Inspector to open the GridBagConstraints 
Editor. If you look at the constraint values assigned to jPanel4, you’ll see 
that both its horizontal and vertical fill constraints are turned on. When 
this is the case, GridBagLayout stretches the panel to completely fill its 
display area, up to the edge of any insets that are set. If there are no insets, 
the panel fills up the display area to the edge of the cells.

This is definitely not the behavior we want for this GridLayout panel since 
we want the buttons in the panel to be their preferred size. To accomplish 
this, you need to remove the panel’s fill constraints.

To remove both the horizontal and vertical fill constraints at the same 
time, check None for the fill constraint value in the GridBagConstraints 
Editor and click OK.

Figure 11.37 fill constraints

Alternatively, to remove the fill constraints for a component, you can 
right-click the component where the cursor turns into a double-sided 
arrow and choose Remove Fill from the context menu.

Notice that this action didn’t make the buttons shrink to their preferred 
size. You also need to adjust the padding values to accomplish this.

Padding
Padding (ipadx, ipady) changes the actual size of the panel by adding a 
specified number of pixels to its minimum width and/or height. The 
minimum size of the GridLayout panel is just large enough to display the 
buttons at their minimum size, plus any width you specified in the hgap 
property for GridLayout. In the case of buttons, there is a margin property 
that is also included in the calculation of the button’s minimum size.

If you like the size of the buttons and the panel at their minimum size, 
then you don’t need to do anything more with the padding. If you want 
the buttons in the GridLayout panel to be larger than their minimum size, 
you can specify how many additional pixels to add to the panel to 
accomplish this. You can even make the buttons smaller by using negative 
values.



G r i d B a g L a y o u t  t u t o r i a l 11-33

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Figure 11.38 Example of different padding values

For this tutorial, since the size of the buttons in jPanel4 is acceptable at 
their minimum size, set both padding values to zero.

Figure 11.39 Padding constraints

Note Remove padding values for multiple components by multiply selecting 
the components, right-clicking, and choosing Remove Padding.

Now the buttons shrink to their preferred sizes.

anchor
To make sure the jPanel4 always stays centered in its display area, you 
need to set the anchor constraint to Center. Since we centered the panel 
before we converted to GridBagLayout, the anchor constraint is probably 
already set to Center. But, open the GridBagConstraints Editor and make 
sure it looks like the following:

Figure 11.40 anchor constraints

Now that the fill is None, the padding values are zero, and the anchor is 
Center, when the container is resized, the buttons stay small and centered 
when the Frame is resized.

insets
Insets simply define an area between the component and the edges of its 
display area into which the component cannot enter. It is just like setting 
margins in a document. No matter how the container is resized, the 
number of pixels for the insets remains constant and work like brakes to 
keep the component away from the edge of the display area.



11-34 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

If you have fill turned on for the component, it fills the display area up to 
the insets. As you resize the container, the component expands to stay up 
against those insets.

In the case of this GridLayout panel, since you removed the fill and 
anchored it in the center of its display area, nothing would be gained by 
adding any insets to the left and right edges of the display area. The only 
thing you need to do here is make sure both the left and right Inset values 
match (set to zero).

You do, however, want to set the top and bottom insets to add space 
above and below jPanel4. Set each of these values in the 
GridBagConstraints Editor to 15 pixels.

Figure 11.41 insets constraints

That takes care of the GridLayout panel. Now, lets move on to the upper 
panels.

Upper panels
You mostly need to do some clean-up and constraint matching for these 
panels ( jPanel2 and jPanel3) and their components.

gridwidth and gridheight
First, open the GridBagConstraints Editor for each of the components in 
jPanel1, and in the Grid Position area, check that each component only 
specifies a value of 1 cell for the Width and Height values (gridwidth and 
gridheight) . If not, correct this.

Note Do not adjust the X or Y values in the Grid Position area.

Figure 11.42 gridwidth and gridheight

Tip You can modify the constraint values for all the components in a single 
GridBagLayout container at once. Hold down the Ctrl key and select all the 
components, then right-click over one of the selected components and 
choose Constraints. Change the desired constraints and click Apply or 
OK.



G r i d B a g L a y o u t  t u t o r i a l 11-35

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

fill
Next, you want all the components and their containers to fill up their 
display area, except for the buttons. As in the GridLayout panel, we don’t 
want the buttons to expand as the Frame is resized.

Again, working with one panel at a time, select each component inside 
jPanel2 and jPanel3, except the button, and check Both for the fill 
constraint. Right-click the center of each component and use the context 
menu.

Lastly, you want the panels themselves to fill up their display area in the 
main GridBagLayout container. So, make sure jPanel2 and jPanel3 have a fill 
constraint of Both as well.

anchor
The two panels, and their label, list, and checkbox components all have 
fill constraints of Both. Since each of these components fills its display 
area both horizontally and vertically, anchor constraints have no effect. 
There is simply no room inside the display area for the component to 
move.

If you want to verify this, try changing some of the anchor constraints for 
these components, then running your program and resizing the container. 
You’ll see there is no change.

The only components in these panels for which anchor has an effect are the 
buttons, which have no fill. Since they do not fill up their display area, 
they can be moved around inside it. To make sure these buttons stay 
centered in their display area, set their anchor constraint to Center.

insets
Since the components in both of these panels happen to be the same, 
matching insets for all of them ensures that the components look the same 
in both panels. None of the components need left and right insets, as the 
panels containing them are invisible and control the spacing in the main 
container. However, top and bottom insets put some spacing between 
each of the components within the panels.

Set the inset values for the components in jPanel2 and jPanel3 in the 
External Insets area of the GridBagConstraints Editor as follows:

Labels: Top = 0, Left = 0, Bottom = 4, Right = 0

Lists: Top = 0, Left = 0, Bottom = 0, Right = 0

Buttons: Top = 10, Left = 10, Bottom = 0, Right = 10

Checkboxes: Top = 6, Left = 0, Bottom = 0, Right = 0



11-36 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Finally, to put a little space between the top and sides of these two panels 
and the outer container (jPanel1), set the following insets for jPanel2 and 
jPanel3:

Top = 10, Left = 10, Bottom = 0, Right =10

Note You don’t need to set insets for the bottom, since the GridLayout panel’s top 
insets are taking care of that space.

ipadx, ipady
One place in this design where ipadx (horizontal padding) is appropriate is 
for controlling the size of the Add to Sort button in jPanel3. If you leave 
the ipadx value at zero for both buttons, then the Add to Sort button 
displays at its minimum size which won’t match the size of the Remove 
from Sort button.

You can use horizontal padding (ipadx) to increase the width of the button 
and make it the same width as the other button.

1 Select the Remove from Sort button and open the GridBagConstraints 
Editor. Make sure the Padding Width and Height values are set to zero, 
and the fill constraints still say None.

2 Select the Add to Sort button, and type in a pixel value of 33 for the 
Padding Width. This amount made the buttons match width in our 
example UI. If it has a different result for you, experiment with 
different values until you find one that works.

Figure 11.43 Add to Sort button without ipadx



G r i d B a g L a y o u t  t u t o r i a l 11-37

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

Figure 11.44 Add to Sort button with ipadx

Tip If changing ipadx to zero didn’t make the Remove from Sort button wide 
enough to display all the text, you may also want to select ‘this’ in the 
component tree to expose the nibs for the main container, and drag the 
right nib to widen the container a bit.

Another thing you could do is make these buttons a bit smaller vertically 
than their preferred size by using a negative value in Padding Height (we 
used a -3). This is, of course, personal preference.

None of the other components in these panels need padding, nor do the 
panels themselves. Since the jPanel2 and jPanel3 have fill constraints, 
these override any padding that might be assigned.

You’ll also notice that the list components use ipadx and ipady, which you 
might not want in reality. Since you did nothing to populate the lists with 
items in this example, if you remove the ipadx and ipady constraints along 
with the fill, the lists disappear. Their minimum size is determined by 
the number of items in the list. We just added ipadx and ipady constraints 
to force a particular size for demonstration purposes.

weightx and weighty
As we said earlier, if you want the components in a container to change 
size as the container is resized, you need to assign weightx and/or 
weighty constraint values to at least one component horizontally and 
vertically. Weight constraints specify how to distribute the extra container 
space created when resizing the container.

You need to set both the weightx and/or weighty constraints, plus the fill 
constraints for a component if you want it to grow. For example, if a 
component has a horizontal weight constraint (weightx), but no horizontal 
fill constraint, then the extra space goes to the padding between the left 
and right edges of the component and the edges of the cell. It enlarges the 
width of the cell without changing the size of the component. If a 
component has both weightx (or weighty) and fill constraints, then the 
extra space is added to the cell, plus the component expands to fill the 
new cell dimension in the direction of the fill constraint (horizontal in 
this case).



11-38 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  2 :  C r e a t i n g  a  G r i d B a g L a y o u t  i n  J B u i l d e r

First, we took all the weight constraint values off that the conversion had 
set. This is what happened:

Figure 11.45 No weight constraints, before resizing

Figure 11.46 No weight constraints, after resizing

Notice how the components are all clumped in the middle after resizing.

We determined that the components we want to grow are jPanel2 and 
jPanel3, and both list components inside them. We tried various weight 
constraint combinations on these components to see the results. The 
following list points to these results:

• Weight constraints on both panels and lists

• Weight constraints on the panels, but not on the lists

• Weight constraints on the lists, but not on the panels

• Horizontal weight constraints only

• Vertical weight constraints only

• Weight constraints on only one panel and list component in the row



G r i d B a g L a y o u t  t u t o r i a l 11-39

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

We want weight constraints on both panels and lists. Set both the weight 
constraints to 1.0 in the GridBagConstraints Editor for all four 
components: jPanel2, jPanel3, jList1, and jList2.

Conclusion

Congratulations! You’ve completed this tutorial, and have a better 
understanding of GridBagLayout and the function of each of the 
GridBagConstraints.

One thing that should be obvious from this exercise is that each 
GridBagLayout is going to require experimentation with the constraints until 
you achieve just the look and behavior you want. JBuilder can assist in 
that process by quickly getting you past the initial GridBagLayout coding 
and on to the fine tuning.

GridBagLayout is a powerful tool, but not necessarily an easy one to use. 
Keep in mind that, just like anything else, the more you practice, the easier 
it gets.

Part 3: Tips and techniques
XYLayout is a feature of

JBuilder SE and
Enterprise. If you use

JBuilder Personal,
substitute null layout

wherever XYLayout is
specified.

Setting individual constraints in the designer

anchor
There are two ways to set a component’s anchor constraint in the designer:

• Click the component and drag it toward the desired location at the edge 
of its display area, much like you would dock a movable toolbar.

For example, to anchor an image in the upper left corner of its display 
area, click the mouse in the middle of the image and drag it until the 
upper left corner of the image touches the upper left corner of the 
display area. This sets the anchor constraint value to NW, both in the 
GridBagConstraints Editor and in the code.

• Select an anchor constraint value in the GridBagConstraints Editor.

Figure 11.47 Anchor constraints in GridBagConstraints Editor



11-40 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

To do this,

a Select the component on the design surface.

b Right-click the component and choose Constraints to open the 
GridBagConstraints Editor.

c Click the desired value in the anchor area, then press OK.

This changes the constraint value in the code and relocates the 
component to its new anchor point on the design surface.

Note Moving the component with the mouse updates the anchor constraint 
value in the GridBagConstraints Editor. Similarly, when you change the 
constraint value in the GridBagConstraints Editor, the component moves 
to its new location on the design surface.

fill
The fastest way to specify the fill constraint for a component is to use the 
component’s context menu on the design surface.

1 Right-click the component on the design surface to display the context 
menu.

2 Do one of the following:

• Select fill Horizontal to set the value to HORIZONTAL.

• Select fill Vertical to set the value to VERTICAL.

• Select both fill Horizontal and fill Vertical to set the value to 
BOTH (this requires displaying the context menu twice).

• Select Remove Fill to set the value to NONE.

You can also specify the fill constraint in the GridBagConstraints Editor.

1 Right-click the component on the design surface and choose 
Constraints to display the GridBagConstraints Editor.

2 Select the desired constraint value in the Fill area, then press OK.

Figure 11.48 Fill constraints in the GridBagConstraints Editor

insets
The design surface displays blue sizing nibs on a selected GridBagLayout 
component to indicate the location and size of its insets. Grab a blue nib 
with the mouse and drag it to increase or decrease the size of the Inset.

When an Inset value is zero, you only see one blue nib on that side of the 
cell, as shown below.



G r i d B a g L a y o u t  t u t o r i a l 11-41

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.49 Insets set to zero on top and bottom of component

When an Inset value is greater than zero, the design surface displays a 
pair of blue nibs for that Inset, one on the edge of the cell and one on the 
edge of the display area. The size of the Inset is the distance (in pixels) 
between the two nibs. Grab either nib to change the size of the Inset.

Figure 11.50 Insets greater than zero on right and left sides of component

For more precise control over the Inset values, use the GridBagConstraints 
Editor to specify the exact number of pixels.

1 Right-click the component on the design surface and choose 
Constraints to display the GridBagConstraints Editor.

2 In the External Insets area, specify the number of pixels for each Inset: 
Top, Left, Bottom, or Right.

Figure 11.51 Insets in the GridBagConstraints Editor

Note While negative Inset values are legal, they can cause components to 
overlap adjacent components and are not recommended.



11-42 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

gridwidth, gridheight
You can specify gridwidth and gridheight constraint values in the 
GridBagConstraints Editor.

1 Right-click the component on the design surface and choose 
Constraints to display the GridBagConstraints Editor.

2 In the Grid Position area, enter a value for gridwidth in the Width field , 
or a value for gridheight in the Height field. Specify the number of cells 
the component occupies in the row or column.

Figure 11.52 Gridwidth and gridheight in the GridBagConstraints Editor

• If you want the value to be RELATIVE, enter a -1.

• If you want the value to be REMAINDER, enter a 0.

Note JBuilder never generates a gridwidth or gridheight value of REMAINDER 
during conversion to GridBagLayout.

You can also use the mouse to change the gridwidth or gridheight by sizing 
the component into adjacent empty cells (dragging a black sizing nib 
across the cell border.)

ipadx, ipady
You can specify a component’s padding (ipadx or ipady) values by clicking 
on any of the black sizing nibs at the edges of the component, and 
dragging with the mouse to increase or decrease the size of the 
component. If you make the component larger than its preferred size, you 
see a positive pixel value. If you make the component smaller than its 
preferred size, you see a negative pixel value.

If you drag the sizing nib beyond the edge of the cell into an empty 
adjacent cell, the component occupies both cells (the gridwidth or 
gridheight values increase by one cell).



G r i d B a g L a y o u t  t u t o r i a l 11-43

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.53 Before: jButton2 gridwidth = 1 cell, ipadx = 46

Figure 11.54 After: jButton2 gridwidth = 2 cells, ipadx increased to 194

For more precise control over the ipadx and ipady values, use the 
GridBagConstraints Editor to specify the exact number of pixels to use for 
the value.

1 Right-click the component on the design surface and choose 
Constraints to display the GridBagConstraints Editor.

2 In the Size Padding area, specify the number of pixels for the Width 
and Height values.

Figure 11.55 Size Padding in the GridBagConstraints Editor

Note Negative values make the component smaller than its preferred size and 
are perfectly valid.



11-44 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

To quickly remove the ipadx and ipady constraints (set them to zero), 
right-click the component on the design surface and choose Remove 
Padding. You can also select multiple components and use the same 
procedure to remove the padding from all of them at once.

gridx, gridy
You can use the mouse to specify which cell the upper left corner of the 
component occupies. Simply click near the upper left corner of the 
component and drag it into a new cell. When moving components that 
take up more than one cell, be sure to click in the upper left cell when you 
grab the component or undesired side effects can occur. Sometimes, due 
to existing values of other constraints for the component, moving the 
component to a new cell with the mouse may cause changes in other 
constraint values, for example, the number of cells that the component 
occupies might change.

To more precisely specify the gridx and gridy constraint values without 
accidentally changing other constraints, use the GridBagConstraints 
Editor.

1 Right-click the component on the design surface and choose 
Constraints to display the GridBagConstraints Editor.

2 In the Grid Position area, enter the number of columns for the X value, 
or the number or rows for the Y value. If you want the value to be 
RELATIVE, enter a -1.

Figure 11.56 Grid Position in the GridBagConstraints Editor

Tip As you move the component on the design surface, the gridx (column) and 
gridy (row) positions are displayed and updated in the status bar at the 
bottom right. “col:” is gridx and “row:” is gridy. The values in the 
GridBagConstraints Editor are updated as well.

Note When you use the mouse to move a component to an occupied cell, the 
designer ensures that two components never overlap by inserting a new 
row and column of cells so the components are not on top of each other. 
When you relocate the component using the GridBagConstraints Editor, 
the designer does not check to make sure the components don’t overlap.



G r i d B a g L a y o u t  t u t o r i a l 11-45

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

weightx, weighty
If you want your cells to grow, weightx and weighty must be set to a 
non-zero value.

To specify the weight constraints for a component on the design surface, 
right-click the component and choose Weight Horizontal or Weight 
Vertical. This sets the value to 1.0.

To remove the weight constraints (set them to zero), right-click the 
component and choose Remove Weights. You can do this for multiple 
components in a container: hold down the Shift key when selecting the 
components, then right-click and choose Remove Weights.

If you want to set the weight constraints to something other than 0.0 or 1.0, 
you can set the values in the GridBagConstraints Editor.

1 Right-click the component(s) and choose Constraints to display the 
GridBagConstraints Editor.

2 Enter a value between 0.0 and 1.0 for the X or Y value in the Weight 
area, then press OK.

Figure 11.57 Weight constraints in the GridBagConstraints Editor

Important weight constraints can sometimes make the sizing behavior in the designer 
difficult to predict. Therefore, setting these constraints should be the last 
step in designing GridBagLayout.

Behavior of weight constraints
Below are some examples of how weight constraints affect the behavior of 
components:

• If all the components have weight constraints of zero in a single 
direction, the components clump together in the center of the container 
for that dimension and don’t expand beyond their preferred size. 
GridBagLayout puts any extra space between its grid of cells and the 
edges of the container.

Figure 11.58 All components have weight constraints of zero in the same direction

• If you have three components with weightx constraints of 0.0, 0.3, and 
0.2 respectively, when the container is enlarged, none of the extra space 



11-46 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

goes to the first component, 3/5 of it goes the second component, and 
2/5 of it goes to the third.

Figure 11.59 Three components with weightx constraints of 0.0, 0.3, and 0.2 respectively

• You need to set both the weight and fill constraints for a direction 
(vertical or horizontal) of a component if you want it to grow.

For example,

• If a component has a non-zero weightx constraint value, but no 
horizontal fill constraint, then the extra space goes to the padding 
between the left and right edges of the component and the edges of 
the display area. It enlarges the width of the display area without 
changing the size of the component.

• If a component has both weight and fill constraints, then the extra 
space is added to the display area, plus the component expands to 
fill the new display area dimension in the direction of the fill 
constraint (horizontal in this case).

The three pictures below demonstrate this.

In the first example, all the components in the GridBagLayout panel 
have weight constraint values of zero. Because of this, the 
components are clustered in the center of the GridBagLayout panel 
with all the extra space in the panel distributed between the outside 
edges of the grid and the panel. The size of the grid is determined by 
the preferred size of the components, plus any insets and ipadx and 
ipady constraints.

Figure 11.60 GridBagLayout with zero weight constraints on all components



G r i d B a g L a y o u t  t u t o r i a l 11-47

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

When this frame is resized, the components remain at their preferred 
size clumped in the middle, and the space around them grows to fill 
the enlarged container.

In the next example, jScrollPane1 has a horizontal weight (weightx) 
constraint of 1.0. Notice that as soon as one component in the 
container is assigned any weight, the components are no longer 
centered in the panel. Since a weightx constraint is set, the 
GridBagLayout manager takes the extra space in the GridBagLayout 
panel that was previously on each side of the grid and puts it into the 
cell containing jScrollPane1. Also notice that jScrollPane1 does not 
change size from the previous example.

Figure 11.61 jScrollPane1 with weightx=1.0, no fill constraints

Note If there is more space than you like inside the cells after adding 
weight to the components, decrease the size of the UI frame until the 
amount of extra space is what you want. To do this, select the this 
frame  in the component tree, then click on its black sizing nibs and 
drag the frame to the desired size.

In the final example, jScrollPane1 has both a weightx constraint of 1.0 
and a horizontal fill constraint. Notice that jScrollPane1 expands to 
fill the width of the display area.



11-48 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.62 jScrollPane1 with weightx=1.0, fill=Horizontal

Important If one component in a column has a weightx value, GridBagLayout gives 
the whole column that value. Conversely, if one component in a row 
has a weighty value, the whole row is assigned that value.

Using drag and drop to edit constraints

When you drag a component in the designer, the outline of the component 
indicates where the component will drop. The status bar indicates which 
column and row the component is in and if the target cell is occupied, 
what new column and/or row will be created to accommodate the 
component in its new position.

Figure 11.63 Component being dragged in current cell in the designer



G r i d B a g L a y o u t  t u t o r i a l 11-49

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.64 Component being dragged to new, occupied cell in the designer

Also, when you drag a component to a new location in its display area, 
JBuilder determines the nearest anchor, then applies the insets necessary to 
make the component stay where you put it.

Dragging a component to an empty cell
When dragging a component into an empty cell, JBuilder retains the 
component’s insets and fill constraints settings.

For example, if the fill constraint is set to Horizontal, when you move the 
component to a wider cell, GridBagLayout expands the component to fill the 
new cell.

Figure 11.65 Before moving jButton2, with fill constraint set to HORIZONTAL



11-50 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.66 Moving jButton2 to same size or larger cell

Notice that in this case, moving jButton2 to the empty cell under jButton1 
also causes one of the columns to be removed from the grid since it is no 
longer needed for any components. The constraints values for other 
components are automatically modified as needed to accommodate this 
change (for instance gridwidth changes from 2 to 1 for components that 
previously spanned both column 1 and column 2).

Note The first column in the grid is number 0.

This a good example, however, of why modifying a design once the 
container is converted to GridBagLayout can be tricky, since you can 
experience unexpected results.

If the component you’re moving is larger in a dimension than the cell into 
which it is being moved, GridBagLayout spans the component across two 
cells, then applies the fill constraints and insets.

For example, if the fill constraint for jButton3 is set to HORIZONTAL and 
you drag it to the cell above jButton2 which is smaller than the button’s 
current size, GridBagLayout makes the button span both column 1 and 2.

Figure 11.67 Before moving jButton3, with fill constraint set to HORIZONTAL



G r i d B a g L a y o u t  t u t o r i a l 11-51

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.68 Moving jButton3 to smaller cell above jButton2

See “Dragging a large component into a small cell” on page 11-53.

Dragging a component to an occupied cell
This action gives you the most drastic results when doing drag-and-drop 
editing because only one component can occupy a cell. Therefore, if you 
try to move a component to an occupied cell, GridBagLayout makes other 
arrangements for the move. It creates a new column or a new row for the 
component.

The side effect of this is that to accommodate the new cells, it changes the 
grid position constraints of many of the other components as well. Their 
gridx or gridy constraints change if their position is after or below the new 
columns or rows in the grid. Their gridwidth or gridheight may change if 
the already spanned columns or rows are affected by the new ones.

It’s especially important to understand this action and resulting behavior. 
If you are using the designer to build up a new UI in GridBagLayout, rather 
than in XYLayout or null layout, much of the time the grid will be full when 
you drop a new component onto it, resulting in the creation of new 
columns or rows and changed constraints for existing components.

The examples below demonstrate what happens when jButton3 is dragged 
to the adjacent cell occupied by jButton1. Notice that as jButton3 is dragged 
into the cell with jButton1, the status bar indicates what column or row the 
mouse cursor is in and if a new column or row will be created when the 
button is dropped there.

GridBagLayout makes the following changes when jButton3 is dragged into 
the same cell as jButton1:

• It inserts a new column between the existing two columns.

• It increases the gridwidth for jLabel1, the jScrollPane1, and jButton2 to 
two columns instead of one.

• It removes the right inset from jButton1 and the left inset from jButton3.



11-52 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.69 Dragging jButton3 into cell with jButton1

Figure 11.70 After moving the button horizontally

If jButton3 is dragged into the cell with the radio button panel (jPanel1):

• It inserts a new row before jButton1 by splitting row 2 in half (occupied 
by the jPanel1 and the bottom part of the jScrollPane1).

• It increases the gridheight of the jScrollPane1 from two to three rows.

• It takes away space from the large row occupied by the jScrollPane1 and 
the jPanel1.

• It removes the bottom inset for jPanel1 and the top inset for jButton3.



G r i d B a g L a y o u t  t u t o r i a l 11-53

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.71 Dragging jButton3 into cell with jPanel1

Figure 11.72 After moving the button vertically

Note You get the same results if you drop a new button into the cell occupied 
by jButton1 or jPanel1, except new components have no fill or insets, 
while a moved component retains its fill and insets constraint settings.

Dragging a large component into a small cell
If you drag a large component into a cell that is smaller than the 
component, the component spans as many empty cells as it needs, while 
retaining its fill and insets constraints. If the component needs more cells 
than are available (for example, if it runs up against an occupied cell or the 
edge of the container), then the last cells occupied grow to accommodate 
the rest of the component, including its insets.



11-54 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.73 Dragging jPanel1 into a small, empty cell

Figure 11.74 After dragging jPanel1

Dragging the black sizing nibs into an adjacent empty cell
Dragging a component’s black sizing nib into an adjacent empty cell 
increases its display area (cell width or height) by one cell in the direction 
of the move.

Figure 11.75 Before dragging top sizing nib of jButton2 into empty cell above



G r i d B a g L a y o u t  t u t o r i a l 11-55

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.76 During drag

Figure 11.77 After drag, jButton2 has gridheight of 2 with insets unchanged

Dragging the black sizing nibs into an adjacent occupied cell
Dragging a component’s black sizing nib into an adjacent occupied cell 
increases the component’s ipadx and ipady constraint values. Notice how 
the status bar indicates this in the example below.

Figure 11.78 Before dragging, jButton2 has zero padding



11-56 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.79 Dragging sizing nib into occupied cell increases padding

Figure 11.80 After dragging, cells are larger since padding is increased

Adding components

When you add a new component to a GridBagLayout container, where 
you click to drop the component determines what new columns or rows 
are created to accommodate it.

Note The default fill and insets constraints for a new component being added 
to GridBagLayout are None.

• To create a new row above an existing component, click at the top of the 
cell containing that component.

• To create a new row below an existing component, click at the bottom 
of the cell containing that component.

• To create a new column to the left of an existing component, click at the 
left of the cell containing that component.

• To create a new column to the right of an existing component, click at 
the right of the cell containing that component.



G r i d B a g L a y o u t  t u t o r i a l 11-57

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Once you have selected a component on the component palette, watch the 
status bar as you move your mouse over the grid to see what to expect. 
The status bar indicates what column and row the component will occupy 
(its gridx and gridy position), as well as what new column or row will be 
created to accommodate the component.

The following examples demonstrate adding a new component on each 
side of jButton1:

Figure 11.81 Clicking above jButton1 creates a new row for jButton3 above jButton1

Figure 11.82 Clicking to the left of jButton1 creates a new column for jButton3 to the left of 
jButton1

Figure 11.83 Clicking below jButton1 creates a new row for jButton3 below jButton1



11-58 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Figure 11.84 Clicking to the right of jButton1 creates a new column for jButton3 to the right of 
jButton1

Miscellaneous tips

Switch back to XYLayout for major adjustments
If your conversion doesn’t give you what you expect, or if you need to add 
additional components to the design, switch back to XYLayout, make the 
changes, then re-convert to GridBagLayout. This may be faster and easier 
than trying to add components to an existing GridBagLayout. Let JBuilder 
do the work of calculating and assigning the constraints.

Remove weights and fill before making adjustments
It is likely that after conversion to GridBagLayout, some adjustments might 
be necessary. During the conversion process from XYLayout to 
GridBagLayout, JBuilder automatically assigns weight constraint values to 
some of the components.

If you have difficulties as you start moving components or sizing nibs on 
the design surface, do an Undo, then remove the weight constraint values 
from all the components in the GridBagLayout container. weight constraints 
are the main culprit in causing unexpected behavior when moving and 
resizing components graphically in a GridBagLayout design. If you remove 
all weight constraints first, it is easier to make the correct adjustments to 
the other constraints.

Note This can also be true of fill constraints. Removing them may make 
adjustments easier.

Adjust any other constraints that need modification. When all other 
constraints are the way you want, then add weight constraints last to only 
the components that need them.



G r i d B a g L a y o u t  t u t o r i a l 11-59

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Making existing GridBagLayout code visually designable

Differences in code
If you create a GridBagLayout container by coding it manually, you typically 
create only one GridBagConstraints object for the GridBagLayout container 
and reuse it as you add components to the container. If you want the 
component you’re adding to the container to have different values for 
particular constraints than the previously added component, then you 
only need to change those constraint values for use with the new 
component. These new values stay in effect for subsequent components 
unless, or until, you change them again.

Important While this method of coding GridBagLayout is the leanest (recycling the 
GridBagConstraints object from previously added components), it doesn’t 
allow you to edit that container visually in JBuilder’s designer.

When you design a GridBagLayout container in the designer, JBuilder 
creates a new GridBagConstraints object for each component you add to the 
container. The GridBagConstraints object has a constructor that takes all 
eleven properties of GridBagConstraints so the code generated by the 
designer can always follow the same pattern.

public GridBagConstraints(int gridx,
                          int gridy,
                          int gridwidth,
                          int gridheight,
                          double weightx,
                          double weighty,
                          int anchor,
                          int fill,
                          Insets insets,
                          int ipadx,
                           int ipady)

For example,

jPanel1.add(jButton1, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,
   GridBagConstraints.CENTER, GridBagConstraints.NONE, 
   new Insets(0, 0, 0, 0), 0, 0));

Modifying code to work in the designer
If you have a GridBagLayout container that was previously coded manually 
using one GridBagConstraints object for the container, before you can 
design the container visually in JBuilder, you must make the following 
modification to your code:

For each component added to the container, you must create a 
GridBagConstraints object with a large constructor that has parameters for 
each of the eleven constraint values, as shown above



11-60 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

Code generated by JBuilder in Part 2
Below is the actual code JBuilder generated when we created the 
GridBagLayout UI in Part2.

package gbl;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
//import com.borland.jbcl.layout.*;

public class Frame1 extends JFrame {

  //Construct the frame
  BorderLayout borderLayout1 = new BorderLayout();
  JPanel jPanel1 = new JPanel();
  JPanel jPanel2 = new JPanel();
  JLabel jLabel1 = new JLabel();
  JList jList1 = new JList();
  JButton jButton1 = new JButton();
  JCheckBox jCheckBox1 = new JCheckBox();
  JLabel jLabel2 = new JLabel();
  JButton jButton2 = new JButton();
  JPanel jPanel3 = new JPanel();
  JCheckBox jCheckBox2 = new JCheckBox();
  JList jList2 = new JList();
  JPanel jPanel4 = new JPanel();
  JButton jButton3 = new JButton();
  JButton jButton4 = new JButton();
  JButton jButton5 = new JButton();
  GridBagLayout gridBagLayout1 = new GridBagLayout();
  GridBagLayout gridBagLayout2 = new GridBagLayout();
  GridBagLayout gridBagLayout3 = new GridBagLayout();
  GridLayout gridLayout1 = new GridLayout();
  
  public Frame1() {
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try  {
      jbInit();
    }
    catch (Exception e) {
      e.printStackTrace();
    }
  }
//Component initialization
  
  private void jbInit() throws Exception  {
    this.getContentPane().setLayout(borderLayout1);
    this.setSize(new Dimension(332, 304));
    jPanel2.setBackground(new Color(192, 192, 255));
    jLabel1.setText("Sorted Columns");
    jLabel1.setFont(new Font("Dialog", 0, 11));
    jButton1.setText("Remove from Sort");
    jCheckBox1.setText("Descending");



G r i d B a g L a y o u t  t u t o r i a l 11-61

P a r t  3 :  T i p s  a n d  t e c h n i q u e s

    jLabel2.setFont(new Font("Dialog", 0, 11));
    jButton2.setText("Add to Sort");
    jPanel3.setBackground(new Color(192, 192, 255));
    jPanel3.setLayout(gridBagLayout3);
    jCheckBox2.setText("Case Sensitive");
    jButton3.setText("Cancel");
    jButton4.setText("Help");
    jButton5.setText("OK");
    gridLayout1.setHgap(6);
    jPanel4.setLayout(gridLayout1);
    jLabel2.setText("Available Columns");
    jPanel2.setLayout(gridBagLayout2);
    jPanel1.setLayout(gridBagLayout1);
    this.setTitle("Frame Title");
    this.getContentPane().add(jPanel1, BorderLayout.CENTER);
    jPanel1.add(jPanel2, new GridBagConstraints(0, 0, 1, 1, 1.0, 1.0,
       GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
       new Insets(10, 10, 0, 10), 0, 0));
    jPanel2.add(jLabel1, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,
       GridBagConstraints.WEST, GridBagConstraints.BOTH, 
       new Insets(0, 0, 2, 0), 0, 4));
    jPanel2.add(jList1, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,
       GridBagConstraints.WEST, GridBagConstraints.BOTH, 
       new Insets(0, 0, 0, 0), 128, 128));
    jPanel2.add(jButton1, new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0,
       GridBagConstraints.CENTER, GridBagConstraints.NONE, 
       new Insets(7, 0, 0, 0), 0, 0));
    jPanel2.add(jCheckBox1, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0,
       GridBagConstraints.WEST, GridBagConstraints.BOTH, 
       new Insets(6, 0, 0, 0), 0, 0));
    jPanel1.add(jPanel3, new GridBagConstraints(1, 0, 1, 1, 1.0, 1.0,
       GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
       new Insets(10, 10, 0, 10), 0, 0));
    jPanel3.add(jLabel2, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,
       GridBagConstraints.WEST, GridBagConstraints.BOTH, 
       new Insets(0, 0, 2, 0), 0, 4));
    jPanel3.add(jList2, new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,
       GridBagConstraints.CENTER, GridBagConstraints.BOTH, 
       new Insets(0, 0, 0, 0), 128, 128));
    jPanel3.add(jButton2, new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0,
       GridBagConstraints.CENTER, GridBagConstraints.NONE, 
       new Insets(7, 0, 0, 0), 32, 0));
    jPanel3.add(jCheckBox2, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0,
       GridBagConstraints.WEST, GridBagConstraints.BOTH, 
       new Insets(6, 0, 0, 0), 0, 0));
    jPanel1.add(jPanel4, new GridBagConstraints(0, 1, 2, 1, 0.0, 0.0,
       GridBagConstraints.CENTER, GridBagConstraints.NONE, 
       new Insets(12, 59, 12, 59), 0, 0));
    jPanel4.add(jButton5, null);
    jPanel4.add(jButton3, null);
    jPanel4.add(jButton4, null);
  }



11-62 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g C o n s t r a i n t s

//Overridden so we can exit on System Close
  
  protected void processWindowEvent(WindowEvent e) {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING) {
      System.exit(0);
    }
  }
}

Other resources on GridBagLayout
• java.awt.GridBagConstraints.html at 

http://java.sun.com/j2se/1.3/docs/api/java/awt/GridBagConstraints.html

• java.awt.GridBagLayout.html at 
http://java.sun.com/j2se/1.3/docs/api/java/awt/GridBagLayout.html

GridBagConstraints

anchor

Description:

When the component is smaller than its display area, use the anchor 
constraint to tell the layout manager where to place the component within 
the area.

The anchor constraint only affects the component within its own display 
area, depending on the fill constraint for the component. For example, if 
the fill constraint value for a component is GridBagConstraints.BOTH (fill 
the display area both horizontally and vertically), the anchor constraint has 
no effect because the component takes up the entire available area. For the 
anchor constraint to have an effect, set the fill constraint value to 
GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL, or 
GridBagConstraints.VERTICAL

Valid values:

GridBagConstraints.CENTER
GridBagConstraints.NORTH
GridBagConstraints.NORTHEAST
GridBagConstraints.EAST
GridBagConstraints.SOUTHEAST
GridBagConstraints.SOUTH
GridBagConstraints.SOUTHWEST
GridBagConstraints.WEST
GridBagConstraints.NORTHWEST

Default value:

GridBagConstraints.CENTER



G r i d B a g L a y o u t  t u t o r i a l 11-63

G r i d B a g C o n s t r a i n t s

fill

Description:

When the component’s display area is larger than the component’s 
requested size, use the fill constraint to tell the layout manager which 
parts of the display area should be given to the component.

As with the anchor constraint, the fill constraints only affect the 
component within its own display area. fill constraints tell the layout 
manager to expand the component to fill the whole area it has been given.

Valid values:

Default value:

GridBagConstraints.NONE

insets

Description:

Use insets to specify the minimum amount of external space (padding) in 
pixels between the component and the edges of its display area. The inset 
says that there must always be the specified gap between the edge of the 
component and the corresponding edge of the cell. Therefore, insets work 
like brakes on the component to keep it away from the edges of the cell. 
For example, if you increase the width of a component with left and right 
insets to be wider than its cell, the cell expands to accommodate the 
component plus its insets. Because of this, fill and padding constraints 
never steal any space from insets.

Valid values:

insets = new Insets(n,n,n,n)

Top, left, bottom, right (where each parameter represents the number of 
pixels between the display area and one edge of the cell.)

Default values:

insets = new Insets(0,0,0,0)

GridBagConstraints.NONE Don’t change the size of the component.

GridBagConstraints.BOTH Resize the component both horizontally 
and vertically to fill the area completely.

GridBagConstraints.HORIZONTAL Only resize the component to fill the 
area horizontally.

GridBagConstraints.VERTICAL Only resize the component to fill the 
area vertically.



11-64 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g C o n s t r a i n t s

gridwidth, gridheight

Description:

Use gridwidth and gridheight constraints to specify the number of cells in a 
row (gridwidth) or column (gridheight) the component uses. This constraint 
value is stated in cell numbers, not in pixels.

Valid values:

Default value:

gridwidth=1, gridheight=1

ipadx, ipady

Description:

Use ipadx and ipady to specify the amount of space in pixels to add to the 
minimum size of the component for internal padding. For example, the 
width of the component is at least its minimum width plus ipadx in pixels. 
The code only adds it once, splitting it evenly between both sides of the 
component. Similarly, the height of the component is at least the 
minimum height plus ipady pixels.

These constraints specify the internal padding for a component:

• ipadx specifies the number of pixels to add to the minimum width of the 
component.

• ipady specifies the number of pixels to add to the minimum height of 
the component.

gridwidth=nn, gridheight=nn Where nn is an integer representing the 
number of cell columns or rows.

GridBagConstraints.RELATIVE (-1) Specifies that this component is the next 
to last one in the row (gridwidth) or 
column (gridheight.) A component with 
a GridBagConstraints.RELATIVE takes 
all the remaining cells except the last 
one. For example, in a row of six 
columns, if the component starts in 
column number 3, a gridwidth of 
RELATIVE makes it take up columns 3, 
4, and 5. Note that columns and rows 
begin numbering at 0 in the grid.

GridBagConstraints.REMAINDER (0) Specifies that this component is the last 
one in the row (gridwidth) or column 
(gridheight).



G r i d B a g L a y o u t  t u t o r i a l 11-65

G r i d B a g C o n s t r a i n t s

Example:

When added to a component that has a minimum size of 30 pixels wide 20 
pixels high:

• If ipadx= 4, the component is 34 pixels wide.

• If ipady= 2, the component is 22 pixels high.

Valid values:

ipadx=nn, ipadx=nn

Default value:

ipadx=0, ipady=0

gridx, gridy

Description:

Use these constraints to specify the grid cell location for the upper left 
corner of the component. For example, gridx=0 is the first column on the 
left, and gridy=0 is the first row at the top. Therefore, a component with the 
constraints gridx=0 and gridy=0 is placed in the first (top left) cell of the 
grid.

GridBagConstraints.RELATIVE specifies that the component be placed relative 
to the previous component as follows:

• When used with gridx, it specifies that this component be placed 
immediately to the right of the last component added.

• When used with gridy, it specifies that this component be placed 
immediately below the last component added.

Valid values:

gridx=nn, gridy=nn

GridBagConstraints.RELATIVE (-1)

Default value:

gridx=1, gridy=1



11-66 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

G r i d B a g C o n s t r a i n t s

weightx, weighty

Description:

Use the weight constraints to specify how to distribute a GridBagLayout 
container’s extra space horizontally (weightx) and vertically (weighty) when 
the container is resized. Weights determine what share of the extra space 
gets allocated to each cell and component when the container is enlarged 
beyond its default size.

Weight values are of type double and are specified numerically in the 
range 0.0 to 1.0 inclusive. Zero means the component should not receive 
any of the extra space, and 1.0 means the component gets a full share of 
the space.

• The weight of a row is calculated to be the maximum weightx of all the 
components in the row.

• The weight of a column is calculated to be the maximum weighty of all 
the components in the column.

Important If you want your cells to grow, weightx and weighty must be set to a 
non-zero value.

Valid values:

weightx=n.n, weighty=n.n

Default value:

weightx=0.0, weighty=0.0



G r i d B a g L a y o u t  t u t o r i a l 11-67

E x a m p l e s  o f  w e i g h t  c o n s t r a i n t s

Examples of weight constraints
Figure 11.85 Weight constraints on both panels and lists

Figure 11.86 Weight constraints on the panels, but not on the lists



11-68 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

E x a m p l e s  o f  w e i g h t  c o n s t r a i n t s

Figure 11.87 Weight constraints on the lists, but not on the panels

Figure 11.88 Horizontal weight constraints (weightx) only on all four components



G r i d B a g L a y o u t  t u t o r i a l 11-69

E x a m p l e s  o f  w e i g h t  c o n s t r a i n t s

Figure 11.89 Vertical weight constraints (weighty) only on all four components

Figure 11.90 Weight constraints on only one panel and list component in the row



11-70 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r



M i g r a t i n g  f i l e s  f r o m  o t h e r  J a v a I D E s A-1

A p p e n d i x

A
Appendix AMigrating files from other

Java IDEs
JBuilder allows you to migrate your files and applications developed in 
other Java IDEs into JBuilder. In some cases, you need to modify your 
code so the file can be visually designed using JBuilder’s visual design 
tools. Java files must meet certain requirements to be visually designable.

To see an example of a visually designable file, create a JBuilder project 
(File|New Project) and use the Application wizard (File|New) to create a 
new application.

See also

• “Requirements for a class to be visually designable” on page 1-6.

VisualAge
No modifications are necessary for VisualAge files. JBuilder’s visual 
design tools can recognize these files as long as they meet the 
requirements of a visually designable file. Use the Project For Existing 
Code wizard in the Online Help to create a new JBuilder project that 
imports your existing source tree. The Project For Existing Code wizard is 
a feature of JBuilder SE and Enterprise.

See also

• “Creating a project from existing files” in Building Applications with 
JBuilder



A-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

F o r t e

Forte
Java files created in Forte need to be modified in the following manner:

1 Create a jbInit() method.

2 Put all of your UI initialization code in the jbInit() method. This 
includes code that adds components to the container and sets event 
handling but does not include code that executes event handling.

3 Put all component declarations outside of the jbInit() method at the 
class level.

VisualCafé
The Import VisualCafé Project wizard automates the process of bringing a 
project created in VisualCafé into JBuilder. This wizard is available from 
the object gallery’s Project page.

To import a project from VisualCafé,

1 Choose File|New. 

The object gallery appears.

2 Select the Project page.

3 Select the Import VisualCafé Project icon.

4 Either double-click the icon, click OK, or press Enter to open the wizard.

See also

• The “Import VisualCafé Project wizard” topic in the online help. Either 
press the Help button in the wizard or choose Help|Help Topics, select 
the Find page, and type in visualcafe.



I n d e x I-1

A
accelerator keys

adding to menus 6-6
accessibility

adding UI components 3-3
designer shortcut keys 2-8
designer, keyboard commands 2-9
designer, navigating in 2-9

actionPerformed() menu event 6-10
adapter types 4-6
adding components

database 5-8
to component palette 7-2
to GridBagLayout 8-31, 11-56
to nested containers 5-2
to UIs 5-5

adding components to designer 3-3
adding menus 6-4, 6-5
adjusting frame runtime dimensions 8-7
aligning components

FlowLayout 8-17
in columns 8-18
in rows 8-17
VerticalFlowLayout 8-19
XYLayout 8-13

alignmentX property 8-6
alignmentY property 8-6
anchor constraints 8-34, 11-62

setting in designer 11-39
anonymous inner class adapters 4-5, 4-6
Applet class defined 1-9
Application wizard

generated UI files 1-7
AWT components

compared 1-10

B
Bean Chooser

adding components 2-4
BorderLayout 8-15

constraints, setting 8-16
Borland

contacting 1-4
developer support 1-4
e-mail 1-6
newsgroups 1-5
online resources 1-5
reporting bugs 1-6

technical support 1-4
World Wide Web 1-5

button events 4-7

C
CardLayout 8-22

creating controls 8-23
gaps 8-23

CDE/Motif Look & Feel 5-9
classes

visual design requirements 1-6
code

generated by events 4-3, 4-6
columnar layouts 8-18
component libraries 1-10

component palette 2-4
component palette 2-4

adding components 7-2
adding pages 7-5
Bean Chooser button 2-4
button images 7-4
managing 7-1
removing components 7-6
removing pages 7-6
reorganizing 7-6

component tree 2-6, 3-1
accessibility 3-3
adding components 3-3
changing component name 3-5
icons 3-6
moving components 3-5
opening designers 3-3
viewing class names 3-6

components
adding non-UI to UIs 5-5
adding to Bean Chooser 2-4
adding to component palette 7-2
adding to design 3-3
adding to GridBagLayout 11-56
adding to nested containers 5-2
adding to PaneLayout 8-47
aligning 8-13
alignmentX property 8-6
alignmentY property 8-6
arranging in grids 8-21, 8-24
attaching event handlers 4-2
AWT, Swing, dbSwing 1-10
changing name in tree 3-5
component palette 2-4

Index



I-2 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

containers 1-8
containers for grouping 5-5
cutting, copying and pasting 3-4
database 5-5, 5-8
DataExpress 2-8
editing and moving in component tree 2-6
finding in design surface 2-3
grouping 5-5, 11-11
Inspector 2-6
managing, in component tree 3-1
manipulating in UI designs 3-4, 5-3
maximumSize 8-6
menus 6-1
minimumSize 8-6
modifying layout constraints 8-5
moving 5-3
non-UI 2-8
non-UI, data-related 2-8
overview 1-8
preferredSize 8-6
removing from UI designs 3-4
resizing 5-3
serializing 7-6, 7-7
setting properties 3-9
setting shared properties 3-9
UI 2-7

See also UI designer
viewing class names 3-6
Window, Frame, Dialog, Panel 1-9

constraints
anchor 11-62
BorderLayout 8-15
CardLayout 8-22
fill 11-63
FlowLayout 8-17
GridBagConstraints 11-62
GridBagLayout 8-24, 8-27, 8-32, 8-33, 8-34
GridLayout 8-21
gridwidth, gridheight 11-64
gridx, gridy 11-65
insets 11-63
ipadx, ipady 11-64
modifying layout 8-3, 8-5
modifying with drag and drop 11-48
OverlayLayout 8-24
padding 11-64
PaneLayout 8-46
setting BorderLayout 8-16
setting in UI designer 11-39
weights 11-66

containers
choosing layouts 8-1
components 5-5
overview 1-8

positioning UI on screen 8-9
preferredSize property 8-8
sizing automatically 8-7
sizing explicitly 8-8
UI screen size 8-7
Window, Frame, Dialog, Panel 1-9

controls
menu components 2-8
UI components 2-7

creating menus 6-1, 6-4
adding items 6-5
checkable itemsMenu designer

checkable items 6-7
disabling items 6-6
inserting separators 6-6
keyboard shortcuts 6-6
menu events 6-10
moving items 6-8
moving to submenus 6-9
pop-up menus 6-11
radio button items 6-7
submenus 6-9

creating UIs 8-50
customizers 7-9
customizing

adding pages to component palette 7-5
cutting, copying, pasting

JavaBean components 3-4

D
Data Access designer 2-8
database components

adding to UIs 5-5, 5-8
DataExpress components 2-8
dbSwing components

compared 1-10
Default designer 2-8
default layouts 8-1
deleting

components from designer 3-4
event handlers 4-3

design surface 2-3
design tasks
design time look and feel 5-11
designer 2-1

accessibility 2-8
adding components 3-3
component tree 2-6, 3-1
cutting, copying and pasting components 3-4
Data Access designer 2-8

See also DataExpress
Default designer 2-8

See also Default designer



I n d e x I-3

deleting components 3-4
design surface 2-3
designer types 3-3
displaying grid 11-12
GridBagLayout 11-12
keyboard shortcuts 2-9
Menu designer 2-8

See also Menu designer
moving components 3-5
parts of 2-1
setting properties 3-8
shortcut keys 2-8
status bar 2-3
structure pane in Design view 2-6

See also component tree
tab order 2-9
types of visual designers 2-7
UI designer 2-7

See also UI designer
undoing/redoing 3-5
viewing component class names 3-6
visual design requirements 1-6

designer types
accessing 3-3

designers
Menu designer 6-1

See also Menu designer
designing

drag and drop 2-3
GridBagLayout with UI designer 8-29
prototyping UIs 8-50

dialog boxes
adding to project 5-6
adding to UIs 5-5, 5-8
creating from snippet 5-6
invoking from menu item 4-7
using one that is not a bean 5-7

Dialog component 1-9
dialog components

pop-up dialogs 2-8
dimensions

runtime UI 8-7
disabling menu items 6-6
documentation conventions 1-3

platform conventions 1-4
drag and drop

visual design 2-3
drop-down list

no property values 3-9
drop-down menus

creating 6-9

E
editors

customizers 7-9
event adapter classes 4-6

overview 4-3
event adapters

anonymous inner class 4-5
standard 4-4

event handlers 4-1
attaching to components 4-2
button example 4-7
creating 4-6
creating for default event 4-2
deleting 4-3
dialog example 4-7
examples 4-6

events 4-1
adapters 4-4

See also event adapters
adding button events 4-7
attaching to menu items 4-7
code generated by 4-3, 4-6
creating and modifying 3-6
dialog example 6-10
menu item events 6-10

examples
invoking dialog from menu 4-7
invoking dialog from menu item 6-10

exposing properties in Inspector 3-7

F
files

migrating files from Java development 
tools A-1

fill constraints 8-35, 11-63
setting in designer 11-40

FlowLayout 8-17
aligning components 8-17
component order 8-18
gap 8-18

fonts
JBuilder documentation conventions 1-3

Forte
migrating files to JBuilder A-2

Frame component 1-9

G
gap

FlowLayout 8-18
VerticalFlowLayout 8-19

getAlignmentX() 8-6
getAlignmentY() 8-6



I-4 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

getMaximumSize() 8-6
getMinimumSize() 8-6
getPreferredSize() 8-6
grid

displaying in designer 11-12
grid cell

defined 8-25
grid constraints

gridwidth, gridheight 11-64
gridx, gridy 11-65

grid lines
displaying in GridBagLayout 8-33

GridBagConstraints 8-27, 11-62
anchor 8-34
changing 8-33
coding manually 8-28
definition of each constraint 8-34
fill 8-35
gridheight 8-35
gridwidth 8-35
gridx 8-36
gridy 8-36
insets 8-37
ipadx 8-38
ipady 8-38
weightx 8-40
weighty 8-40

GridBagConstraints Editor 8-32
GridBagLayout 8-24

adding components 11-56
advantages 11-7
context menu for components 8-33
converting to 8-29
defined 11-3
designing visually 11-12
example 11-3
grouping components 11-11
overview 11-2
simplifying 11-8
tips and techniques 11-39
tutorial 11-1

GridBagLayout constraints
modifying with drag and drop 11-48

GridBagLayout containers
adding components 8-31
designing visually 8-29
display area 8-25
displaying grid 8-33
example 8-43
modifying code to be designable 8-29

gridheight constraints 8-25, 8-35
GridLayout 8-21

columns and rows 8-21
gaps 8-21

GridLayout containers 8-21
gridwidth constraints 8-25, 8-35
gridwidth, gridheight constraints

setting in designer 11-42
gridx constraints 8-36
gridx, gridy constraints

setting in designer 11-44
gridy constraints 8-36
grouping components 5-5, 11-11

H
handling events 4-1

See also event handlers

I
icons

component palette 7-4
component tree 3-6

image files
component palette 7-4

importing
from other IDEs A-1

inner class adapters 4-6
inset constraints 8-37, 11-63

setting in designer 11-40
Inspector 2-6, 3-6

behind the scenes 3-10
exposing different levels of properties 3-7
property editors 3-9
saving strings 7-10
setting properties 3-8
setting shared properties 3-9
surfacing property values 3-7

installing
components on component palette 7-2

ipadx constraints 8-38
ipadx, ipady constraints

setting in designer 11-42
ipady constraints 8-38

J
Java Metal Look & Feel 5-9
JavaBean editor

Inspector 2-6
JavaBeans 1-8

See also components
Bean Chooser 2-4
coding visually 2-1

See also designer
component palette 2-4
containers 1-8



I n d e x I-5

JBuilder
component libraries 1-10

JFileChoooser dialog box 4-7

K
keyboard shortcuts

designer 2-9
keystrokes

designer shortcut keys 2-8

L
layout constraints 8-3

changing in GridBagLayout 8-33
examples 8-4
grids 8-27
setting with GridBagConstraints Editor 8-32

layout managers 8-1
See also layouts
adding custom 8-10
choosing in Inspector 8-4
default layout 8-1
overview 8-1
unassigned 8-14

layout properties
examples 8-4
modifying 8-5

LayoutManager2 11-3
layouts

adding custom 8-10
BorderLayout 8-15
BoxLayout2 8-20
CardLayout 8-22
choosing in Inspector 8-1
columnar 8-18
combining columns and rows 8-20
constraints examples 8-4
data grids 8-21
default layout 8-1
FlowLayout 8-17
GridBagLayout 8-24
GridLayout 8-21
modifying 8-3
nested 8-51
null 8-14
OverlayLayout 8-24
OverlayLayout2 8-24
PaneLayout 8-46

See also PaneLayout
portable 8-8
properties examples 8-4
prototyping UI 8-50
prototyping UI design 8-50
provided with JBuilder 8-11

tutorial 10-1
VerticalFlowLayout 8-18
XYLayout 8-8, 8-12

libraries
components 1-10

localizing String property values 7-10
look and feel

design time 5-11
modifying 5-9
runtime 5-9
runtime vs. design time 5-9

M
MacOS Adaptive Look & Feel 5-9
maximumSize 8-6
menu components 2-8, 6-1

See also Menu designer
pop-up menus 2-8

Menu designer 2-8, 6-1
attaching events 6-10
disabling menu items 6-6
inserting or deleting items 6-5
keyboard shortcuts 6-6
moving items 6-8
pop-up menus 6-11
radio button items 6-7
separators 6-6
submenus, creating 6-9
submenus, moving to 6-9
toolbar 6-3
tools 6-3

menu events
attaching code example 4-7
creating 6-10

See also creating menus
example of 6-10

menus
adding to UIs 5-5, 5-8
creating 6-4

See also creating menus
designing 6-1
inserting or deleting items 6-5
keyboard shortcuts 6-6
terminology 6-2

Metal Look & Feel 5-9
migrating files

from other Java development tools A-1
minimumSize 8-6
modifying

component layout constraints 8-5
layout constraints 8-3
layout properties 8-3, 8-5

moving components in designer 3-5



I-6 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

N
navigating

in the designer 2-9
nested layouts 8-51
nested menus

creating 6-9
See also submenus

nesting panels and layouts 11-11
tutorial 10-1

newsgroups
Borland 1-5
public 1-6

non-UI components
adding to UIs 5-5, 5-8

null layout 8-14
differences between XYLayout 8-2

O
object data types

adding to Inspector 3-9
OverlayLayout 8-24

P
pack() 8-7

sizing containers automatically 8-7
using in code 8-10

padding constraints
ipadx, ipady 11-42, 11-64
setting in designer 11-42

Panel component 1-9
PaneLayout 8-46

adding components 8-47
creating in UI designer 8-47
pane location and size 8-49
PaneConstraint variables 8-46

panels
adding to CardLayout container 8-22
changing in CardLayout 8-22
nesting 8-51, 11-11

pop-up menus 6-11
portability

sizing containers 8-9
portable layouts 8-8
preferredSize 8-6, 8-8
preinstalled components 7-1
properties

changing 3-6
exposing as class level variable 3-7
exposing in Inspector 3-7
layouts 8-5
modifying layouts 8-3
setting 3-6, 3-9

setting for multiple components 3-9
setting in Inspector 3-8
surfacing values in Inspector 3-7

property editors
GridBagConstraints 8-32

Property Exposure Level 3-7
prototyping UI

using XYLayout 8-50

R
redoing/undoing

in Designer 3-5
resizing components 5-3
ResourceBundle

saving String property values 7-10
row layouts 8-17
runtime look and feel 5-9

S
scope

property data types 3-9
screen size

runtime UI 8-7
separators

inserting in menus 6-6
serializing components 7-6, 7-7
serializing objects

alternatives 7-8
setSize() 8-7

sizing containers explicitly 8-8
using in code 8-10

setting container size
automatically 8-7
explicitly 8-8

setting events 3-6
setting properties 3-6
shortcut keys

adding to menus 6-6
designer 2-8

sizing containers
for portability 8-9
using pack() 8-7
using setSize() 8-8

SplitPanel 8-47
pane location and size 8-49

standard event adapters 4-4, 4-6
status bars

designer 2-3
String property values

saving to ResourceBundle 7-10
structure pane

component tree 3-1



I n d e x I-7

submenus
creating 6-9

surfacing property values 3-7
Swing components

compared 1-10

T
tab order

designer 2-9
terminology

menu design 6-2
testing

UIs 5-11
third-party components 7-2
this object

serializing 7-8
toolbars

menu designer 6-3
tools

Menu designer 6-3
trees

component tree 3-1
tutorials

creating a text editor 9-1
nested layouts 10-1

types
adding object data types to Inspector 3-9

U
UI 5-1

See also user interfaces
UI components 2-7

See also UI designer
adding to component palette 7-1
grouping 5-5
selecting 5-2

UI design 1-1
See also UI designer
See also visual design
tips 8-50, 8-51

UI designer 2-7
adding components 5-2
adding database components 5-8
adding dialog boxes 5-6
adding menus 5-6
adding non-UI components 5-5
grouping components 5-5
moving and resizing components 5-3
selecting components 5-2
serializing components 7-6, 7-7
using customizers 7-9

UI window runtime size 8-7

undoing/redoing
in designer 3-5

Usenet newsgroups 1-6
user interfaces 1-1

See also UI designer
See also visual design
adding components 3-3, 5-2
adding database components 5-5, 5-8
adding dialog boxes 5-5
adding menus 5-5, 6-4
building with wizards 1-7
cutting, copying, and pasting components 3-4
designing
grouping components 5-5
inserting or deleting menu items 6-5
look and feel 5-9
moving and resizing components 5-3
nesting 8-51
positioning on screen 8-9
prototyping in designer 8-50
selecting components 5-2
testing at runtime 5-11
tutorial 10-1
visual design 2-8

See also Menu designer
See also UI designer

V
variables

exposing property at class level 3-7
VerticalFlowLayout 8-18, 8-19

gap 8-19
horizontal fill 8-19
order of components 8-20
vertical fill 8-20

visual components 2-7, 2-8
visual controls 2-7, 2-8

See also Menu designer
See also UI designer

visual design 3-1, 11-12
See also components
component palette 2-4
containers 1-8
grouping components 5-5
heirarchical view 2-6

See also component tree
in JBuilder 1-1
JavaBeans 1-8
Menu designer 2-8

See also Menu designer
requirements 1-6
the designer 2-1

See also designer



I-8 D e s i g n i n g  A p p l i c a t i o n s  w i t h  J B u i l d e r

UI designer 2-7
See also UI designer

using the design surface 2-3
using the designer 2-1
using wizards 1-7

VisualAge
migrating files to JBuilder A-1

VisualCafe
migrating files to JBuilder A-2

W
weight constraints 11-66

examples 11-67
setting in designer 11-45
weightx 8-40
weighty 8-40

Window component 1-9
windows

positioning on screen 8-9
Windows Look & Feel 5-9
wizards

in visual design 1-7

X
XYLayout 8-8, 8-12

aligning components 8-13
alignment options 8-14
differences between null layout 8-2
prototyping with 8-50


	Designing Applications with JBuilder®
	Contents
	Tutorials
	Ch 1: Visual design in JBuilder
	Documentation conventions
	Developer support and resources
	Contacting Borland Technical Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs

	Requirements for a class to be visually designable
	Starting with wizards
	Understanding JavaBeans
	Understanding containers
	Types of containers

	Understanding component libraries


	Ch 2: Introducing the designer
	Using the designer
	The design surface
	The component palette
	Using the Bean Chooser

	The Inspector
	The component tree

	Designer categories
	UI designer
	Menu designer
	Data Access designer
	Default designer
	Keyboarding in the designer


	Ch 3: Using the component tree and Inspector
	Using the component tree
	Opening particular designer types
	Adding components
	Cutting, copying, and pasting components
	Deleting components
	Using Undo and Redo
	Changing a component name
	Moving a component
	Viewing component class names
	Understanding component tree icons

	Using the Inspector
	Surfacing property values
	Making properties class variables
	Setting property exposure

	Setting property values
	Setting shared properties
	Setting a property when the drop-down list is empty
	Understanding the Inspector



	Ch 4: Handling events
	Attaching event-handling code
	Creating a default event handler
	Deleting event handlers

	Connecting controls and events
	Standard event adapters
	Anonymous inner class adapters
	Choosing event handler style

	Examples: connecting and handling events
	Displaying text when a button is pressed
	Invoking a dialog box from a menu item


	Ch 5: Creating user interfaces
	Selecting components in the UI
	Adding to nested containers

	Moving and resizing components
	Managing the design
	Grouping components
	Adding application-building components
	Menus
	Dialog boxes
	Database components


	Changing look and feel
	Runtime look and feel
	Design time look and feel
	Testing the UI at runtime


	Ch 6: Designing menus
	Opening the Menu designer
	Menu terminology
	Menu design tools
	Creating menus
	Adding menu items
	Inserting and deleting menus and menu items
	Inserting separators
	Specifying accelerator keys
	Disabling (dimming) menu items
	To disable a Swing menu item

	Creating checkable menu items
	Creating Swing radio button menu items

	Moving menu items
	Creating submenus
	Moving existing menus to submenus

	Attaching code to menu events
	Example: Invoking a dialog box from a menu item

	Creating pop-up menus

	Ch 7: Advanced topics
	Managing the component palette
	Adding a component to the component palette
	Selecting an image for a component palette button
	Adding a page to the component palette
	Removing a page or component from the component�palette
	Reorganizing the component palette

	Serializing
	Serializing components in JBuilder
	Serializing a this object

	Using customizers in the designer
	Modifying beans with customizers

	Handling resource bundle strings

	Ch 8: Using layout managers
	About layout managers
	Using null and XYLayout
	Understanding layout properties
	Understanding layout constraints
	Examples of layout properties and constraints

	Selecting a new layout for a container
	Modifying layout properties
	Modifying component layout constraints

	Understanding sizing properties
	Determining the size and location of your UI window at runtime
	Sizing a window automatically with pack()
	Calculating preferredSize for containers
	Portable layouts
	XYLayout

	Explicitly setting the size of a window using setSize()
	Making the size of your UI portable to various platforms
	Positioning a window on the screen
	Placing the sizing and positioning method calls in�your�code

	Adding custom layout managers
	Layouts provided with JBuilder
	XYLayout
	Aligning components in XYLayout
	Alignment options for XYLayout
	null

	BorderLayout
	Setting constraints

	FlowLayout
	Alignment
	Gap
	Order of components

	VerticalFlowLayout
	Alignment
	Gap
	Horizontal fill
	Vertical fill
	Order of components

	BoxLayout2

	GridLayout
	Columns and rows
	Gap

	CardLayout
	Creating a CardLayout container
	Creating the controls
	Specifying the gap
	OverlayLayout2

	GridBagLayout
	Display area
	About GridBagConstraints
	Setting GridBagConstraints manually in the source code

	Modifying existing GridBagLayout code to work in�the�designer
	Designing GridBagLayout visually in the designer
	Converting to GridBagLayout
	Adding components to a GridBagLayout container
	Setting GridBagConstraints in the GridBagConstraints Editor
	Displaying the grid
	Using the mouse to change constraints
	Using the GridBagLayout context menu
	GridBagConstraints

	anchor
	Setting the anchor constraint in the designer

	fill
	Specifying the fill constraint in the designer

	gridwidth, gridheight
	Specifying gridwidth and gridheight constraints in the designer

	gridx, gridy
	Specifying the grid cell location in the designer

	insets
	Setting inset values in the designer

	ipadx, ipady
	Setting the size of internal padding constraints in the designer

	weightx, weighty
	Setting weightx and weighty constraints in the designer
	Examples of how weight constraints affect components' behavior

	Sample GridBagLayout source code

	PaneLayout
	PaneConstraints variables
	How components are added to PaneLayout
	Creating a PaneLayout container in the designer
	Modifying the component location and size in the Inspector

	Prototyping your UI
	Use XYLayout and null layout for prototyping
	Design the big regions first
	Save before experimenting

	Using nested panels and layouts

	Ch 9: Tutorial: Building a Java text editor
	What this tutorial demonstrates
	Sample code for this tutorial

	Step 1: Setting up
	Creating the project
	Selecting the project’s code style options
	Using the Application wizard
	Suppressing automatic hiding of JFrame
	Setting the look and feel

	Step 2: Adding a text area
	Step 3: Creating the menus
	Step 4: Adding a FontChooser dialog
	Setting the dialog’s frame and title properties
	Creating an event to launch the FontChooser

	Step 5: Attaching a menu item event to the FontChooser
	Step 6: Attaching menu item events to JColorChooser
	Step 7: Adding a menu event handler to clear the text area
	Step 8: Adding a file chooser dialog
	Internationalizing Swing components

	Step 9: Adding code to read text from a file
	Step 10: Adding code to menu items for saving a file
	Step 11: Adding code to test if a file has been modified
	Step 12: Activating the toolbar buttons
	Specifying button tool tip text
	Creating the button events
	Creating a fileOpen() method
	Creating a helpAbout() method

	Step 13: Hooking up event handling to the text area
	Step 14: Adding a context menu to the text area
	Step 15: Showing filename and state in the window title bar
	Step 16: Deploying the Text Editor application to a JAR file
	Overview
	Running the Archive Builder
	Testing the deployed application from the command line
	Modifying the JAR file and retesting the application


	Ch 10: Tutorial: Creating a UI with nested layouts
	Step 1: Creating the UI project
	Using the Project wizard

	Step 2: Generating the application source files
	Using the Application wizard

	Step 3: Changing contentPane’s layout
	Step 4: Adding the main panels
	Step 5: Creating toolbars
	Step 6: Adding toolbar buttons
	Step 7: Adding components to the middle panel
	Step 8: Creating a status bar
	Step 9: Converting to portable layouts
	Step 10: Completing your layout

	Ch 11: GridBagLayout tutorial
	Introduction
	Part 1: About GridBagLayout
	Overview of GridBagLayout
	What is GridBagLayout?
	What is the component’s display area?
	What are GridBagConstraints?
	Why is GridBagLayout so complicated?
	Why use GridBagLayout?
	Simplifying GridBagLayout
	Sketch your design on paper first
	Use nested panels and layouts
	Use the JBuilder visual designer
	Prototype your UI in XYLayout


	Part 2: Creating a GridBagLayout in JBuilder
	About the design
	Step 1: Design the layout structure
	Step 2: Create a project for this tutorial
	Step 3: Add the components to the containers
	Add the main panel to the UI frame
	Create the left panel and add its components
	Create the right panel and add its components
	Create the bottom panel and add its components

	Step 4: Convert the outer panel to GridBagLayout
	Step 5: Convert the upper panels to GridBagLayout
	Step 6: Convert the lower panel to GridLayout
	Step 7: Make final adjustments
	GridLayout panel
	Upper panels

	Conclusion

	Part 3: Tips and techniques
	Setting individual constraints in the designer
	anchor
	fill
	insets
	gridwidth, gridheight
	ipadx, ipady
	gridx, gridy
	weightx, weighty
	Behavior of weight constraints

	Using drag and drop to edit constraints
	Dragging a component to an empty cell
	Dragging a component to an occupied cell
	Dragging a large component into a small cell
	Dragging the black sizing nibs into an adjacent empty cell

	Adding components
	Miscellaneous tips
	Switch back to XYLayout for major adjustments
	Remove weights and fill before making adjustments

	Making existing GridBagLayout code visually designable
	Differences in code
	Modifying code to work in the designer
	Code generated by JBuilder in Part 2
	Other resources on GridBagLayout


	GridBagConstraints
	anchor
	fill
	insets
	gridwidth, gridheight
	ipadx, ipady
	gridx, gridy
	weightx, weighty

	Examples of weight constraints

	App A: Migrating files from other Java IDEs
	VisualAge
	Forte
	VisualCafé

	Index
	A
	accelerator keys
	adding to menus�6�6

	accessibility
	adding UI components�3�3
	designer shortcut keys�2�8
	designer, keyboard commands�2�9
	designer, navigating in�2�9

	actionPerformed() menu event�6�10
	adapter types�4�6
	adding components
	database�5�8
	to component palette�7�2
	to GridBagLayout�8�31, 11�56
	to nested containers�5�2
	to UIs�5�5

	adding components to designer�3�3
	adding menus�6�4, 6�5
	adjusting frame runtime dimensions�8�7
	aligning components
	FlowLayout�8�17
	in columns�8�18
	in rows�8�17
	VerticalFlowLayout�8�19
	XYLayout�8�13

	alignmentX property�8�6
	alignmentY property�8�6
	anchor constraints�8�34, 11�62
	setting in designer�11�39

	anonymous inner class adapters�4�5, 4�6
	Applet class defined�1�9
	Application wizard
	generated UI files�1�7

	AWT components
	compared�1�10


	B
	Bean Chooser
	adding components�2�4

	BorderLayout�8�15
	constraints, setting�8�16

	Borland
	contacting�1�4
	developer support�1�4
	e-mail�1�6
	newsgroups�1�5
	online resources�1�5
	reporting bugs�1�6
	technical support�1�4
	World Wide Web�1�5

	button events�4�7

	C
	CardLayout�8�22
	creating controls�8�23
	gaps�8�23

	CDE/Motif Look & Feel�5�9
	classes
	visual design requirements�1�6

	code
	generated by events�4�3, 4�6

	columnar layouts�8�18
	component libraries�1�10
	component palette�2�4

	component palette�2�4
	adding components�7�2
	adding pages�7�5
	Bean Chooser button�2�4
	button images�7�4
	managing�7�1
	removing components�7�6
	removing pages�7�6
	reorganizing�7�6

	component tree�2�6, 3�1
	accessibility�3�3
	adding components�3�3
	changing component name�3�5
	icons�3�6
	moving components�3�5
	opening designers�3�3
	viewing class names�3�6

	components
	adding non-UI to UIs�5�5
	adding to Bean Chooser�2�4
	adding to component palette�7�2
	adding to design�3�3
	adding to GridBagLayout�11�56
	adding to nested containers�5�2
	adding to PaneLayout�8�47
	aligning�8�13
	alignmentX property�8�6
	alignmentY property�8�6
	arranging in grids�8�21, 8�24
	attaching event handlers�4�2
	AWT, Swing, dbSwing�1�10
	changing name in tree�3�5
	component palette�2�4
	containers�1�8
	containers for grouping�5�5
	cutting, copying and pasting�3�4
	database�5�5, 5�8
	DataExpress�2�8
	editing and moving in component tree�2�6
	finding in design surface�2�3
	grouping�5�5, 11�11
	Inspector�2�6
	managing, in component tree�3�1
	manipulating in UI designs�3�4, 5�3
	maximumSize�8�6
	menus�6�1
	minimumSize�8�6
	modifying layout constraints�8�5
	moving�5�3
	non-UI�2�8
	non-UI, data-related�2�8
	overview�1�8
	preferredSize�8�6
	removing from UI designs�3�4
	resizing�5�3
	serializing�7�6, 7�7
	setting properties�3�9
	setting shared properties�3�9
	UI�2�7
	viewing class names�3�6
	Window, Frame, Dialog, Panel�1�9

	constraints
	anchor�11�62
	BorderLayout�8�15
	CardLayout�8�22
	fill�11�63
	FlowLayout�8�17
	GridBagConstraints�11�62
	GridBagLayout�8�24, 8�27, 8�32, 8�33, 8�34
	GridLayout�8�21
	gridwidth, gridheight�11�64
	gridx, gridy�11�65
	insets�11�63
	ipadx, ipady�11�64
	modifying layout�8�3, 8�5
	modifying with drag and drop�11�48
	OverlayLayout�8�24
	padding�11�64
	PaneLayout�8�46
	setting BorderLayout�8�16
	setting in UI designer�11�39
	weights�11�66

	containers
	choosing layouts�8�1
	components�5�5
	overview�1�8
	positioning UI on screen�8�9
	preferredSize property�8�8
	sizing automatically�8�7
	sizing explicitly�8�8
	UI screen size�8�7
	Window, Frame, Dialog, Panel�1�9

	controls
	menu components�2�8
	UI components�2�7

	creating menus�6�1, 6�4
	adding items�6�5
	checkable itemsMenu designer
	disabling items�6�6
	inserting separators�6�6
	keyboard shortcuts�6�6
	menu events�6�10
	moving items�6�8
	moving to submenus�6�9
	pop-up menus�6�11
	radio button items�6�7
	submenus�6�9

	creating UIs�8�50
	customizers�7�9
	customizing
	adding pages to component palette�7�5

	cutting, copying, pasting
	JavaBean components�3�4


	D
	Data Access designer�2�8
	database components
	adding to UIs�5�5, 5�8

	DataExpress components�2�8
	dbSwing components
	compared�1�10

	Default designer�2�8
	default layouts�8�1
	deleting
	components from designer�3�4
	event handlers�4�3

	design surface�2�3
	design tasks
	design time look and feel�5�11
	designer�2�1
	accessibility�2�8
	adding components�3�3
	component tree�2�6, 3�1
	cutting, copying and pasting components�3�4
	Data Access designer�2�8
	Default designer�2�8
	deleting components�3�4
	design surface�2�3
	designer types�3�3
	displaying grid�11�12
	GridBagLayout�11�12
	keyboard shortcuts�2�9
	Menu designer�2�8
	moving components�3�5
	parts of�2�1
	setting properties�3�8
	shortcut keys�2�8
	status bar�2�3
	structure pane in Design view�2�6
	tab order�2�9
	types of visual designers�2�7
	UI designer�2�7
	undoing/redoing�3�5
	viewing component class names�3�6
	visual design requirements�1�6

	designer types
	accessing�3�3

	designers
	Menu designer�6�1

	designing
	drag and drop�2�3
	GridBagLayout with UI designer�8�29
	prototyping UIs�8�50

	dialog boxes
	adding to project�5�6
	adding to UIs�5�5, 5�8
	creating from snippet�5�6
	invoking from menu item�4�7
	using one that is not a bean�5�7

	Dialog component�1�9
	dialog components
	pop-up dialogs�2�8

	dimensions
	runtime UI�8�7

	disabling menu items�6�6
	documentation conventions�1�3
	platform conventions�1�4

	drag and drop
	visual design�2�3

	drop-down list
	no property values�3�9

	drop-down menus
	creating�6�9


	E
	editors
	customizers�7�9

	event adapter classes�4�6
	overview�4�3

	event adapters
	anonymous inner class�4�5
	standard�4�4

	event handlers�4�1
	attaching to components�4�2
	button example�4�7
	creating�4�6
	creating for default event�4�2
	deleting�4�3
	dialog example�4�7
	examples�4�6

	events�4�1
	adapters�4�4
	adding button events�4�7
	attaching to menu items�4�7
	code generated by�4�3, 4�6
	creating and modifying�3�6
	dialog example�6�10
	menu item events�6�10

	examples
	invoking dialog from menu�4�7
	invoking dialog from menu item�6�10

	exposing properties in Inspector�3�7

	F
	files
	migrating files from Java development tools�A�1

	fill constraints�8�35, 11�63
	setting in designer�11�40

	FlowLayout�8�17
	aligning components�8�17
	component order�8�18
	gap�8�18

	fonts
	JBuilder documentation conventions�1�3

	Forte
	migrating files to JBuilder�A�2

	Frame component�1�9

	G
	gap
	FlowLayout�8�18
	VerticalFlowLayout�8�19

	getAlignmentX()�8�6
	getAlignmentY()�8�6
	getMaximumSize()�8�6
	getMinimumSize()�8�6
	getPreferredSize()�8�6
	grid
	displaying in designer�11�12

	grid cell
	defined�8�25

	grid constraints
	gridwidth, gridheight�11�64
	gridx, gridy�11�65

	grid lines
	displaying in GridBagLayout�8�33

	GridBagConstraints�8�27, 11�62
	anchor�8�34
	changing�8�33
	coding manually�8�28
	definition of each constraint�8�34
	fill�8�35
	gridheight�8�35
	gridwidth�8�35
	gridx�8�36
	gridy�8�36
	insets�8�37
	ipadx�8�38
	ipady�8�38
	weightx�8�40
	weighty�8�40

	GridBagConstraints Editor�8�32
	GridBagLayout�8�24
	adding components�11�56
	advantages�11�7
	context menu for components�8�33
	converting to�8�29
	defined�11�3
	designing visually�11�12
	example�11�3
	grouping components�11�11
	overview�11�2
	simplifying�11�8
	tips and techniques�11�39
	tutorial�11�1

	GridBagLayout constraints
	modifying with drag and drop�11�48

	GridBagLayout containers
	adding components�8�31
	designing visually�8�29
	display area�8�25
	displaying grid�8�33
	example�8�43
	modifying code to be designable�8�29

	gridheight constraints�8�25, 8�35
	GridLayout�8�21
	columns and rows�8�21
	gaps�8�21

	GridLayout containers�8�21
	gridwidth constraints�8�25, 8�35
	gridwidth, gridheight constraints
	setting in designer�11�42

	gridx constraints�8�36
	gridx, gridy constraints
	setting in designer�11�44

	gridy constraints�8�36
	grouping components�5�5, 11�11

	H
	handling events�4�1
	See also event handlers


	I
	icons
	component palette�7�4
	component tree�3�6

	image files
	component palette�7�4

	importing
	from other IDEs�A�1

	inner class adapters�4�6
	inset constraints�8�37, 11�63
	setting in designer�11�40

	Inspector�2�6, 3�6
	behind the scenes�3�10
	exposing different levels of properties�3�7
	property editors�3�9
	saving strings�7�10
	setting properties�3�8
	setting shared properties�3�9
	surfacing property values�3�7

	installing
	components on component palette�7�2

	ipadx constraints�8�38
	ipadx, ipady constraints
	setting in designer�11�42

	ipady constraints�8�38

	J
	Java Metal Look & Feel�5�9
	JavaBean editor
	Inspector�2�6

	JavaBeans�1�8
	See also components
	Bean Chooser�2�4
	coding visually�2�1
	component palette�2�4
	containers�1�8

	JBuilder
	component libraries�1�10

	JFileChoooser dialog box�4�7

	K
	keyboard shortcuts
	designer�2�9

	keystrokes
	designer shortcut keys�2�8


	L
	layout constraints�8�3
	changing in GridBagLayout�8�33
	examples�8�4
	grids�8�27
	setting with GridBagConstraints Editor�8�32

	layout managers�8�1
	See also layouts
	adding custom�8�10
	choosing in Inspector�8�4
	default layout�8�1
	overview�8�1
	unassigned�8�14

	layout properties
	examples�8�4
	modifying�8�5

	LayoutManager2�11�3
	layouts
	adding custom�8�10
	BorderLayout�8�15
	BoxLayout2�8�20
	CardLayout�8�22
	choosing in Inspector�8�1
	columnar�8�18
	combining columns and rows�8�20
	constraints examples�8�4
	data grids�8�21
	default layout�8�1
	FlowLayout�8�17
	GridBagLayout�8�24
	GridLayout�8�21
	modifying�8�3
	nested�8�51
	null�8�14
	OverlayLayout�8�24
	OverlayLayout2�8�24
	PaneLayout�8�46
	portable�8�8
	properties examples�8�4
	prototyping UI�8�50
	prototyping UI design�8�50
	provided with JBuilder�8�11
	tutorial�10�1
	VerticalFlowLayout�8�18
	XYLayout�8�8, 8�12

	libraries
	components�1�10

	localizing String property values�7�10
	look and feel
	design time�5�11
	modifying�5�9
	runtime�5�9
	runtime vs. design time�5�9


	M
	MacOS Adaptive Look & Feel�5�9
	maximumSize�8�6
	menu components�2�8, 6�1
	See also Menu designer
	pop-up menus�2�8

	Menu designer�2�8, 6�1
	attaching events�6�10
	disabling menu items�6�6
	inserting or deleting items�6�5
	keyboard shortcuts�6�6
	moving items�6�8
	pop-up menus�6�11
	radio button items�6�7
	separators�6�6
	submenus, creating�6�9
	submenus, moving to�6�9
	toolbar�6�3
	tools�6�3

	menu events
	attaching code example�4�7
	creating�6�10
	example of�6�10

	menus
	adding to UIs�5�5, 5�8
	creating�6�4
	designing�6�1
	inserting or deleting items�6�5
	keyboard shortcuts�6�6
	terminology�6�2

	Metal Look & Feel�5�9
	migrating files
	from other Java development tools�A�1

	minimumSize�8�6
	modifying
	component layout constraints�8�5
	layout constraints�8�3
	layout properties�8�3, 8�5

	moving components in designer�3�5

	N
	navigating
	in the designer�2�9

	nested layouts�8�51
	nested menus
	creating�6�9

	nesting panels and layouts�11�11
	tutorial�10�1

	newsgroups
	Borland�1�5
	public�1�6

	non-UI components
	adding to UIs�5�5, 5�8

	null layout�8�14
	differences between XYLayout�8�2


	O
	object data types
	adding to Inspector�3�9

	OverlayLayout�8�24

	P
	pack()�8�7
	sizing containers automatically�8�7
	using in code�8�10

	padding constraints
	ipadx, ipady�11�42, 11�64
	setting in designer�11�42

	Panel component�1�9
	PaneLayout�8�46
	adding components�8�47
	creating in UI designer�8�47
	pane location and size�8�49
	PaneConstraint variables�8�46

	panels
	adding to CardLayout container�8�22
	changing in CardLayout�8�22
	nesting�8�51, 11�11

	pop-up menus�6�11
	portability
	sizing containers�8�9

	portable layouts�8�8
	preferredSize�8�6, 8�8
	preinstalled components�7�1
	properties
	changing�3�6
	exposing as class level variable�3�7
	exposing in Inspector�3�7
	layouts�8�5
	modifying layouts�8�3
	setting�3�6, 3�9
	setting for multiple components�3�9
	setting in Inspector�3�8
	surfacing values in Inspector�3�7

	property editors
	GridBagConstraints�8�32

	Property Exposure Level�3�7
	prototyping UI
	using XYLayout�8�50


	R
	redoing/undoing
	in Designer�3�5

	resizing components�5�3
	ResourceBundle
	saving String property values�7�10

	row layouts�8�17
	runtime look and feel�5�9

	S
	scope
	property data types�3�9

	screen size
	runtime UI�8�7

	separators
	inserting in menus�6�6

	serializing components�7�6, 7�7
	serializing objects
	alternatives�7�8

	setSize()�8�7
	sizing containers explicitly�8�8
	using in code�8�10

	setting container size
	automatically�8�7
	explicitly�8�8

	setting events�3�6
	setting properties�3�6
	shortcut keys
	adding to menus�6�6
	designer�2�8

	sizing containers
	for portability�8�9
	using pack()�8�7
	using setSize()�8�8

	SplitPanel�8�47
	pane location and size�8�49

	standard event adapters�4�4, 4�6
	status bars
	designer�2�3

	String property values
	saving to ResourceBundle�7�10

	structure pane
	component tree�3�1

	submenus
	creating�6�9

	surfacing property values�3�7
	Swing components
	compared�1�10


	T
	tab order
	designer�2�9

	terminology
	menu design�6�2

	testing
	UIs�5�11

	third-party components�7�2
	this object
	serializing�7�8

	toolbars
	menu designer�6�3

	tools
	Menu designer�6�3

	trees
	component tree�3�1

	tutorials
	creating a text editor�9�1
	nested layouts�10�1

	types
	adding object data types to Inspector�3�9


	U
	UI�5�1
	See also user interfaces

	UI components�2�7
	See also UI designer
	adding to component palette�7�1
	grouping�5�5
	selecting�5�2

	UI design�1�1
	See also UI designer
	See also visual design
	tips�8�50, 8�51

	UI designer�2�7
	adding components�5�2
	adding database components�5�8
	adding dialog boxes�5�6
	adding menus�5�6
	adding non-UI components�5�5
	grouping components�5�5
	moving and resizing components�5�3
	selecting components�5�2
	serializing components�7�6, 7�7
	using customizers�7�9

	UI window runtime size�8�7
	undoing/redoing
	in designer�3�5

	Usenet newsgroups�1�6
	user interfaces�1�1
	See also UI designer
	See also visual design
	adding components�3�3, 5�2
	adding database components�5�5, 5�8
	adding dialog boxes�5�5
	adding menus�5�5, 6�4
	building with wizards�1�7
	cutting, copying, and pasting components�3�4
	designing
	grouping components�5�5
	inserting or deleting menu items�6�5
	look and feel�5�9
	moving and resizing components�5�3
	nesting�8�51
	positioning on screen�8�9
	prototyping in designer�8�50
	selecting components�5�2
	testing at runtime�5�11
	tutorial�10�1
	visual design�2�8


	V
	variables
	exposing property at class level�3�7

	VerticalFlowLayout�8�18, 8�19
	gap�8�19
	horizontal fill�8�19
	order of components�8�20
	vertical fill�8�20

	visual components�2�7, 2�8
	visual controls�2�7, 2�8
	See also Menu designer
	See also UI designer

	visual design�3�1, 11�12
	See also components
	component palette�2�4
	containers�1�8
	grouping components�5�5
	heirarchical view�2�6
	in JBuilder�1�1
	JavaBeans�1�8
	Menu designer�2�8
	requirements�1�6
	the designer�2�1
	UI designer�2�7
	using the design surface�2�3
	using the designer�2�1
	using wizards�1�7

	VisualAge
	migrating files to JBuilder�A�1

	VisualCafe
	migrating files to JBuilder�A�2


	W
	weight constraints�11�66
	examples�11�67
	setting in designer�11�45
	weightx�8�40
	weighty�8�40

	Window component�1�9
	windows
	positioning on screen�8�9

	Windows Look & Feel�5�9
	wizards
	in visual design�1�7


	X
	XYLayout�8�8, 8�12
	aligning components�8�13
	alignment options�8�14
	differences between null layout�8�2
	prototyping with�8�50





