
Since 1994: The Original Magazine of the Linux Community

NOVEMBER 2007 | ISSUE 163

HEARTBEAT | BLENDER | DISTCC | SCTP | RAPIDMIND | APIs

L
IN

U
X

 J
O

U
R

N
A

L
H

IG
H

-P
E

R
F

O
R

M
A

N
C

E
 C

O
M

P
U

T
IN

G
H

eartbeat | B
lender | distcc | SCTP | R

apidM
ind | R

H
EL Clusters | A

PIs
N

O
V

E
M

B
E

R
2007

IS
S

U
E

163

™

High-Performance
Network Programming

SCTP Multiple Associations

INTERVIEW WITH

RapidMind
HIGH-PERFORMANCE
COMPUTING
�RHEL Cluster Suite
�Heartbeat and High Availability
�High-Availability E-Mail with Active Directory
�Distribute Compiles with distcc

w w w . l i n u x j o u r n a l . c o m

0 74470 03102 4

1 1

$5.99US $6.99CAN

THE PRESENT
AND FUTURE
KING OF HPC

+

http://www.l

http://www.appro.com

Manage Any Data Center.
Anytime. Anywhere.

Avocent builds hardware and software to access, manage and control any IT asset in
your data center, online or offl ine, keeping it, and your business, “always on”.

Visit us on our Remote Control Tour. For locations near
you, go to www.avocent.com/remotecontrol.

Avocent, the Avocent logo and The Power of Being There, are registered
trademarks of Avocent Corporation. ©2007 Avocent Corporation.

Infrastructure Mgt. World
Scottsdale, AZ - Booth TBD

Sept. 10 - 12

VM World
San Francisco, CA - Booth 1113

Sept. 11 - 13

AFCOM Data Center World
Dallas, TX - Booth 436

Sept. 17 - 18

High Perf. on Wall Street
New York, NY - Booth 216

Sept. 17

IDC Enterprise Infra. Forum
New York, NY - Booth TBD

Sept. 20

Interface Salt Lake City
Salt Lake City, UT - Booth 309

Oct. 4

GEOINT
San Antonio, TX - Booth 374

Oct. 22 - 24

Interop New York Fall
New York, NY - Booth 543

Oct. 24 - 25

AFCEA Asia-PAC TechNet
Honolulu, HI - Booth 516

Nov. 4 - 9

Super Computing
Reno, NV - Booth 164

Nov. 12 - 15

LISA
Dallas, TX - Booth 200

Nov. 14 - 15

DaCEY Awards
Atlanta, GA

Nov. 15

Gartner Data Center Conf.
Las Vegas, NV - Booth TBD

Nov. 27 - 30

Interface Seattle
Seattle, WA - Booth 206

Nov. 28

SEE US AT ANY OF THESE SHOWS!

Visit
you,

Avocent_RemoteAd_issNov.indd 1 9/7/07 4:25:46 PM

http://www.avocent.com/remotecontrol

CONTENTS NOVEMBER 2007
Issue 163

2 | november 2007 www.l inux journa l .com

46 RED HAT ENTERPRISE LINUX CLUSTER SUITE
The trusty Red Hat cluster.
Khurram Shiraz

52 GETTING STARTED WITH HEARTBEAT
Availability in a heartbeat.
Daniel Bartholomew

56 BUILDING A SCALABLE HIGH-AVAILABILITY
E-MAIL SYSTEM WITH ACTIVE DIRECTORY
AND MORE
Cyrus-IMAP to the rescue.
Jack Chongjie Xue

60 DISTRIBUTED COMPUTING WITH DISTCC
Put your lazy machines to work.
Jes Hall

HIGH-PERFORMANCE
COMPUTING

ON THE COVER
• High-Performance Network Programming, p. 68
• SCTP Multiple Associations, p. 74
• Interview with RapidMind, p. 64
• RHEL Cluster Suite, p. 46
• Heartbeat and High Availability, p. 52
• High-Availability E-Mail with Active Directory, p. 56
• Distribute Compiles with distcc, p. 60

FEATURES
IM

AG
E

©
IS

TO
CK

PH
OT

O.
CO

M
/N

AR
VI

KK

http://www.linuxjournal.com

Agility.

Coyotes respond with lightning speed.
Your network should, too.
Coyotes respond with lightning speed.
Your network should, too.

With Coyote Point, you'll never have to wonder if your
network is fast enough or flexible enough. You'll know it is.

From local to global load balancing, application
acceleration or ultimate network manageability, Coyote
Point leads the pack. We take the guesswork and difficulty
out of application traffic management. You won’t find
anything faster, smarter or more affordable.

Find out why more than 2,000 businesses rely on us to
maximize their infrastructure. Learn what Coyote Point
could mean to your Web and network traffic.

Write info@coyotepoint.com or call 1-877-367-2696.

Copyright © 2007 All rights reserved. www.coyotepoint.comCopyright © 2007 All rights reserved. www.coyotepoint.com

mailto:info@coyotepoint.com
http://www.coyotepoint.com

COLUMNS
22 REUVEN M. LERNER’S

AT THE FORGE
Thinking about APIs

26 MARCEL GAGNÉ’S
COOKING WITH LINUX
Because Nothing Says High
Performance Like a Good Race

32 DAVE TAYLOR’S
WORK THE SHELL
Keeping Score in Yahtzee

34 JON "MADDOG" HALL’S
BEACHHEAD
Navigating by the Sun

38 DOC SEARLS’
LINUX FOR SUITS
The Usefulness Paradigm

96 NICHOLAS PETRELEY’S
/VAR/OPINION
Is Hardware Catching Up to Java?

IN EVERY ISSUE
8 LETTERS
12 UPFRONT
18 TECH TIPS
42 NEW PRODUCTS
81 ADVERTISERS INDEX

INDEPTH
64 PICKING THE RAPIDMIND

How to get those cores pumping.

Nicholas Petreley

68 HIGH-PERFORMANCE
NETWORKING
PROGRAMMING IN C
Make the most of your bandwidth.

Girish Venkatachalam

74 MULTIPLE ASSOCIATIONS
WITH STREAM CONTROL
TRANSMISSION PROTOCOL
Chat up SCTP.

Jan Newmarch

80 ROMAN’S LAW AND
FAST PROCESSING WITH
MULTIPLE CPU CORES
Life in the -fast lane.

Roman Shaposhnik

86 HIGH-PERFORMANCE
LINUX CLUSTERS
Linux in the Top 500.

David Morton

88 OPEN-SOURCE COMPOSITING
IN BLENDER
Power compositing in Blender.

Dan Sawyer

CONTENTS NOVEMBER 2007
Issue 163

4 | november 2007 www.l inux journa l .com

USPS LINUX JOURNAL (ISSN 1075-3583) is published monthly by Belltown Media, Inc., 2211 Norfolk, Ste 514, Houston, TX
77098 USA. Periodicals postage paid at Houston, Texas and at additional mailing offices. Cover price is $5.99 US. Sub scrip tion rate is
$25/year in the United States, $32 in Canada and Mexico, $62 elsewhere. POSTMASTER: Please send address changes to Linux
Journal, PO Box 980985, Houston, TX 77098. Subscriptions start with the next issue.

LAPTOPS
It has been a good year for
innovation in Linux laptops
with many new models,
technologies and brands now
at your disposal. In next issue’s
Laptop Buying Guide, we’ll tell
you what to look for and where
to buy the Linux laptop that
best fulfills your needs and
won’t bust your budget.

As always, there’s much more.
Reuven M. Lerner will show
you how to create your own
Facebook applications, and
Ben Martin will explain how
to protect your laptop files
with FUSE and an on-line
storage service.

Next Month

64 RAPIDMIND

http://www.linuxjournal.com

www.logicsupply.com

INCREASE RELIABILTY.

solid state systems
fully x86 compatible

fanless, quiet operation

Direct-Plug
IDE Flash Modules

Intel, VIA & AMD CPUs

PicoPSU Power Supplies

GO SOLID.

DISCOVER MINI-ITX.

Executive Editor

Senior Editor

Art Director

Products Editor

Editor Emeritus

Technical Editor

Senior Columnist

Chef Français

Security Editor

Proofreader

Publisher

General Manager

Director of Sales

Regional Sales Manager

Regional Sales Manager

Circulation Director

Marketing Coordinator

System Administrator

Webmaster

Accountant

Jill Franklin
jill@linuxjournal.com
Doc Searls
doc@linuxjournal.com
Garrick Antikajian
garrick@linuxjournal.com
James Gray
newproducts@linuxjournal.com
Don Marti
dmarti@linuxjournal.com
Michael Baxter
mab@cruzio.com
Reuven Lerner
reuven@lerner.co.il
Marcel Gagné
mggagne@salmar.com
Mick Bauer
mick@visi.com

Geri Gale

Carlie Fairchild
publisher@linuxjournal.com

Rebecca Cassity
rebecca@linuxjournal.com

Laura Whiteman
laura@linuxjournal.com
Joseph Krack
joseph@linuxjournal.com
Kathleen Boyle
kathleen@linuxjournal.com

Mark Irgang
mark@linuxjournal.com
Lana Newlander
mktg@linuxjournal.com

Mitch Frazier
sysadm@linuxjournal.com
Katherine Druckman
webmaster@linuxjournal.com

Candy Beauchamp
acct@linuxjournal.com

Contributing Editors
David A. Bandel • Ibrahim Haddad • Robert Love • Zack Brown • Dave Phillips
Marco Fioretti • Ludovic Marcotte • Paul Barry • Paul McKenney • Dave Taylor

Editor in Chief
Nick Petreley, ljeditor@linuxjournal.com

Linux Journal is published by, and is a registered trade name of, Belltown Media, Inc.
PO Box 980985, Houston, TX 77098 USA

Editorial Advisory Board
Daniel Frye, Director, IBM Linux Technology Center
Jon “maddog” Hall, President, Linux International

Lawrence Lessig, Professor of Law, Stanford University
Ransom Love, Director of Strategic Relationships, Family and Church History Department,

Church of Jesus Christ of Latter-day Saints
Sam Ockman
Bruce Perens

Bdale Garbee, Linux CTO, HP
Danese Cooper, Open Source Diva, Intel Corporation

Advertising
E-MAIL: ads@linuxjournal.com

URL: www.linuxjournal.com/advertising
PHONE: +1 713-344-1956 ext. 2

Subscriptions
E-MAIL: subs@linuxjournal.com

URL: www.linuxjournal.com/subscribe
PHONE: +1 713-589-3503

FAX: +1 713-589-2677
TOLL-FREE: 1-888-66-LINUX

MAIL: PO Box 980985, Houston, TX 77098 USA
Please allow 4–6 weeks for processing address changes and orders

PRINTED IN USA

LINUX is a registered trademark of Linus Torvalds.

http://www.logicsupply.com
mailto:ljeditor@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:doc@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:newproducts@linuxjournal.com
mailto:dmarti@linuxjournal.com
mailto:mab@cruzio.com
mailto:reuven@lerner.co.il
mailto:mggagne@salmar.com
mailto:mick@visi.com
mailto:publisher@linuxjournal.com
mailto:rebecca@linuxjournal.com
mailto:laura@linuxjournal.com
mailto:joseph@linuxjournal.com
mailto:kathleen@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:mktg@linuxjournal.com
mailto:sysadm@linuxjournal.com
mailto:webmaster@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/subscribe

Your Wish Is Our Command
I would love to see a detailed explanation on
the new Completely Fair Scheduler in the
Linux kernel, including areas where it may be
inferior to the existing scheduler and where it
excels. Also, I’d like to see an explanation of
the tickless patches, which apparently result
in significant power savings.

--
Chris Thompson

We’ll look into a scheduling article, but we have
an article on power savings in the works, includ-
ing information on the tickless patches.—Ed.

The Arcade Game Machine Is Hot!
I was very interested to read Shawn Powers’
article on building an arcade machine based
around Linux [LJ, August 2007]. However, one
thing that concerns me is the lack of reference
to cooling issues. If a PC is in a wooden box for
any period of time without a fan to force cool
air through, there would be a risk of heat dam-
age to the machine, particularly the CPU and
the hard drive (www.coker.com.au/energy/
computer-power.html).

The above URL has the energy use of some
computers I have owned at various times (the
idle tests were idle at a Linux prompt—idle at a
DOS prompt or the BIOS uses significantly more
power). You will note that a P4 machine uses
significantly more power than a PIII. I can only
guess at the relative power requirements of a
PIII and the original game hardware, but I
expect that all PCs manufactured in the last ten

years use more power and produce more waste
heat. Even a PIII might have cooling problems!

One thing that is not widely known is that a
P4 will generally take more clock cycles than
a PIII to complete a given amount of work—
a 1.5GHz P4 will often deliver the same
performance as a 1GHz PIII! If a machine
is to run in a poorly ventilated space, a
PIII is a significantly better option than a P4.

Hard drives take as much as 5W when
idling. Use of other mass storage devices
(such as USB) might reduce the power use
for such a machine.

I have a small stockpile of old PIII machines for
occasions when I need a low-power machine.

--
Russell Coker

The Inevitable Descent into Anarchy
The Linux OS is the most glamorous (I’m
serious) example of [the] trend [toward data
anarchy], but Linux is only an outgrowth of a
much bigger universe of collaborative software
development that uses open-source licenses
and techniques to leverage the talents and
creative impulses of hundreds of thousands
of people worldwide. Cheap MP3 players
and P2P file-sharing networks are another.

Direct evidence of the trend is plummeting CD
sales as users swap CDs, copy new ones, file
share and port their files to any device they
want. The efforts of the RIAA are becoming
laughable, as they sue a few unfortunates and
scold the rest of the population from a position
of pious hypocrisy. They are the biggest thieves
of all. Also pathetic are the many pop stars, now
grown rich and fat sucking on the corporate tit,
who parrot the RIAA’s line. It matters not.

The only reason artists and record companies
ever had control over music media was that
it was impractical for listeners to create their
own. Given that ability, most listeners will
follow my own common-sense creed: when
I get the data, it’s my data, and I’ll do with
it what I damn well please.

The RIAA hands down morality lessons while
cracking the lawsuit whip in hope of putting
the file-sharing genie back in its bottle. They
pretend that there is some moral code that

forbids consumers to copy and give away
music media. Their morality is based on laws
that were manufactured by a Congress eager
to be bribed. It’s easy to burst the RIAA’s
moral bubble. Just travel back to 1850 in
your mind and go hear a music performer.

In 19th-century America, the artists played and
the people enjoyed. It had been that way for
10,000 years. If the artists were lucky or very
good, they could make a living by performing.
Many do that to this very day. It is an honest liv-
ing. They work at what they love. It’s their job.

It was a temporary quirk of technology that
allowed artists and record companies to turn
performances into commodities to be bought
and sold. A few lucky artists could perform,
record and then sit back and let the bucks roll in
while they snorted coke and bought mansions.
That’s OK with me, and it still works for some.
But, the data is written on the wall, and it is an
age-old warning that applies to all: adapt or die.

Readers may wonder what all this has to do
with cell-phone networks. Carl Brown suggest-
ed that there is nothing fundamentally block-
ing the concept of a user-created cell-phone
network. It also is true that there is nothing
blocking users from building their own world-
wide data network, uncontrolled by govern-
ments or corporations. If I can share my Wi-Fi
with the neighbors in my apartment, I can
bridge to the guy across the street who can
run a directional shot to his buddy a quarter-
mile away who can...(ad infinitum).

The idea was not invented by me, although I
humbly declare I thought of it myself. The idea
is so obvious, anyone with an understanding of
networks is likely to conceive of it. A quick
Google search brings to light that user-operated
and user-supported community networks are
already providing free service to many people.
The ISPs don’t like it, but there’s nothing they
can do about it. Those simple networks, howev-
er, are only attachments to the Internet. They
still depend on the corporate infrastructure.

Another and related sign of the trend toward
anarchy is revealed in the project called
Netsukuku (netsukuku.freaknet.org). That
project community has created a dæmon
that uses network interfaces to communicate
directly with the same dæmon in a connected

8 | november 2007 www.l inux journa l .com

letters

http://www.coker.com.au/energy/computer-power.html
http://www.coker.com.au/energy/computer-power.html
http://www.linuxjournal.com

- -

- -

- -

SERVERS DIRECT CAN HELP YOU CONFIGURE YOUR NEXT HIGH PERFORMANCE SERVER SYSTEM - CALL US TODAY!

1.877.727.7887 | www.ServersDirect.com

Our flexible on-line products configurator allows you to source a custom solution, or call and our product experts are standing by to
help you assemble systems that require a little extra. Servers Direct - your direct source for scalable, cost effective server solutions.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, Pentium, and Pentium III Xeon are trademarks of
Intel Corporation or it’s subsidiaries in the United States and other countries.

$3,099STARTING
PRICE

SDR-5111T 5U ADVANCED STORAGE SERVER
Quad Core dual Xeon CPU based, with 24 hot-swap hard disk bays suitable for 18TB of pure data Storage
capacity

* 5U Rackmount chassis with Redundant 1350W power supply
* Supermicro X7DBE Server Board with Intel® 5000P (Blackford)
 Chipset
* Intel Quad-Core Xeon Processor E5310 1.6GHZ
* Total 1024MB, 2pcs x 512MB Kingston DDR2 667MHz FB-
 DIMM ECC

* Seagate 750GB 7200 RPM 16MB Cache SATA 3.0Gb/s Hard Drive
* 24 x 1" Hot-swap Drive Bays
* Intel® (ESB2/Gilgal) 82563EB Dual-
 port Gigabit Ethernet Controller
* Intel ESB2 SATA 3.0Gbps Controller
 RAID 0, 1, 5, 10 support

$1,199STARTING
PRICE

SDR-7045B-TB 4U FILE SERVER
4U Quad-Core Xeon Server offers excellent value and expandability

* 4U Rackmountable / Tower with 650W power supply
* Supermicro Super X7DBE Server Board with Intel® 5000P
 (Blackford) Chipset
* Intel Quad-Core Xeon Processor E5310 1.6GHZ
* Total 1024MB, 2pcs x 512MB Kingston DDR2 667MHz FB-DIMM
 ECC

* Seagate SATAII 750GB 7200 RPM 16MB Cache SATA 3.0Gb/s
 Hard Drive
* 6 x 3.5" Hot-swap SAS/SATA Drive Bays
* Dual-port Gigabit Ethernet Controller
* Intel ESB2 SATA 3.0Gbps Controller RAID 0, 1, 5, 10 support

STARTING
PRICE

SDR-3500T 3U DATABASE SERVER
Easily Scalable storage solution with hot-swap functionality for growing businesses

* 3U Rackmount chassis with Redundant 800W power supply
* Supermicro X7DBE+ Server Board with Intel® 5000P (Blackford)
 Chipset
* Intel Quad-Core Xeon Processor E5310 1.6GHZ
* Total 1024MB, 2pcs x 512MB Kingston DDR2 533MHz FB-DIMM
 ECC

* Seagate SATAII 500GB 7200 RPM 16MB Cache SATA 3.0Gb/s
Hard
 Drive
* 16 x 1" Hot-swap SATA Drive Bays
* Dual-port Gigabit Ethernet Controller
* Intel ESB2 SATA 3.0Gbps Controller RAID 0, 1, 10 support$1,999

$1,259STARTING
PRICE

SDR-2503T 2U APPLICATION SERVER
Highest performing with Dual Core/ Quad Core Xeon CPU based. Excellent with general purpose applications
and provide the most power.
* 2U Rackmount Chassis with 650W power supply
* Supermicro X7DVL-E Server Board with Intel® 5000V (Blackford VS)
 Chipset
* Intel Quad-Core Xeon Processor E5310 1.6GHZ
* Total 512MB, 2pcs x 256MB Kingston DDR2 533Mhz FB-DIMM ECC

* Seagate SATAII 250GB 7200 RPM 16MB Cache SATA 3.0Gb/s Hard
 Drive
* 6 x 1” Hot-swap SATA Drive Bays
* Intel® (ESB2/Gilgal) 82563EB Dual-port Gigabit Ethernet Controller
* Intel® ESB2 SATA 3.0Gbps Controller RAID 0, 1, 5, 10 support

* 1U Rackmount Chassis with 520W power supply
* Supermicro X7DVL-L Server Board with Intel® 5000V (Blackford VS) Chipset
* Intel Quad-Core Xeon Processor E5310 1.6GHZ
* Total 512MB, 2pcs x 256MB Kingston DDR2 533Mhz FB-DIMM ECC
* Seagate SATAII 160GB 7200 RPM 8MB Cache SATA 3.0Gb/s Hard Drive
* 4 x 1” Hot-swap SATA Drive Bays
* Two Intel® 82563EB Dual-port Gigabit Ethernet Controller
* Intel® ESB2 SATA 3.0Gbps Controller RAID 0, 1, 5, 10 support$1,129

EXCELLENT GENERAL PURPOSE SERVER FOR ORGANIZATIONS WITH THE NEED
FOR A LOW, ENTRY LEVEL PRICE

SDR-1105T 1U ENTRY LEVEL SERVER

KEEP YOUR BUSINESS RUNNING SMOOTHLYKEEP YOUR BUSINESS RUNNING SMOOTHLY
PROTECT YOUR SMALL BUSINESS WITH THE BUILT-IN SECURITY ENHANCEMENTS OF THE DUAL-CORE INTEL® XEON® PROCESSOR IN

YOUR SERVERSDIRECT SYSTEM.

MORE PRODUCTS, BETTER SERVICE, GUARANTEED.
GO STRAIGHT TO THE SOURCE!

http://www.ServersDirect.com

computer. In theory, the mesh network so
created can mimic the Internet’s TCP/IP
layer with a decentralized domain name
system that uses distributed architecture
and builds routes that connect the
computers attached to its network. It
is, as the creators say, anarchical.

I do not claim to see the future. I only
extrapolate what seems to be an inex-
orable transfer of communications and
data management power from the elite to
the masses. If you believe in people, this
can only be a good thing. If you fear peo-
ple, or begrudge them control over their
own lives, then you will fight it...and lose.

--
Tim Copeland

Practical Linux Box
I eagerly awaited the current issue of LJ
[September 2007] to read the Ultimate
Linux Box article. I plan to build a system
very soon and hoped to get some ideas.

Unfortunately, I just skimmed the article and
was very disappointed. What I really would
like to see is a Practical Linux Box. No, your
sidebar “Penultimate” doesn’t address my
needs any more than the ULB. Your ULB is
really the Ultimate [Windows] Gaming Box,
isn’t it? For example, look at the Display Card
section. It’s the latest and greatest DirectX 10
card? How is this a good Linux box?

The things I’m looking for may not be
what everyone else is looking for, but I’d
like to think there are enough people to
warrant some practical thinking in this
type of article, such as:

� Quiet/fanless power supply and case.

� Small case with enough room for DVD
and two hard drives.

� Affordable: $2,000–$4,000 is not prac-
tical or affordable.

� Onboard video is ok.

You could argue that I want a media PC,
but that’s not really my goal. I’d settle for
one. I’m estimating that I can build a sys-
tem that fits the above specs for about
$700, without monitor. Other names for
what I want might be the Quiet Linux Box
or the Affordable Linux Box.

--
JT Moree

The Ultimate Linux Box had nothing to
do with Windows games or serving up
DirectX 10, which isn’t even very useful on
Windows yet. We’ll consider your desires
for the next ULB issue though.—Ed.

Protection Money
I have to congratulate you on your
/var/opinion “The Benevolent Racketeer”
[LJ, August 2007].

Your imaginary letter writer speaks right
out of the soul of everybody. The crowd
reading the lines will equally agree and
see their points addressed as the crowd
reading between the lines. Luckily, I
paid my insurance money to Linux
Journal, so you will not sue me for
reading this terrific piece of word code.

--
Kurt

mkdir Errors
I too have a small nit to pick with
respect to sample code and the lack of
error handling. It is trivial to add at least
some minimal error handling. In the
September 2007 issue’s Letters, Jack
points out that mkdir error handling is
non-existent. Bash scripts are notorious
for not doing any error handling. As
for the mkdir issue that Jack points out,
I would suggest the following:

mkdir -p $dimension

if [$? -ne 0]; then

echo "Error: could not create\

directory $dimension"

return 1

fi

The -p switch to mkdir will create all
directories in the $dimension string
recursively and will not complain if any
or all directories already exist. The main
reason for failure will be user permis-
sions. This is handled by echoing the
error and returning an error value to
the caller.

If the goal of these sample scripts is to
instruct beginners to learn techniques
with bash, error handling cannot be
ignored. The same goes for Ruby,
Python, Perl, C and C++. The code
samples in the SCTP (why does that
make me think of John Candy) article
are excellent in this regard.

--
steeve

10 | november 2007 www.l inux journa l .com

[LETTERS]

At Your Service

MAGAZINE
PRINT SUBSCRIPTIONS: Renewing your
subscription, changing your address, paying your
invoice, viewing your account details or other
subscription inquiries can instantly be done on-line,
www.linuxjournal.com/subs. Alternatively,
within the U.S. and Canada, you may call
us toll-free 1-888-66-LINUX (54689), or
internationally +1-713-589-2677. E-mail us at
subs@linuxjournal.com or reach us via postal mail,
Linux Journal, PO Box 980985, Houston, TX
77098-0985 USA. Please remember to include your
complete name and address when contacting us.

DIGITAL SUBSCRIPTIONS: Digital subscriptions
of Linux Journal are now available and delivered as
PDFs anywhere in the world for one low cost.
Visit www.linuxjournal.com/digital for more
information or use the contact information above
for any digital magazine customer service inquiries.

LETTERS TO THE EDITOR: We welcome
your letters and encourage you to submit them
to ljeditor@linuxjournal.com or mail them to
Linux Journal, 1752 NW Market Street, #200,
Seattle, WA 98107 USA. Letters may be edited
for space and clarity.

WRITING FOR US: We always are looking
for contributed articles, tutorials and real-
world stories for the magazine. An author’s
guide, a list of topics and due dates can be
found on-line, www.linuxjournal.com/author.

ADVERTISING: Linux Journal is a great
resource for readers and advertisers alike.
Request a media kit, view our current
editorial calendar and advertising due
dates, or learn more about other advertising
and marketing opportunities by visiting us
on-line, www.linuxjournal.com/advertising.
Contact us directly for further information,
ads@linuxjournal.com or +1 713-344-1956 ext. 2.

ON-LINE
WEB SITE: Read exclusive on-line-only content on
Linux Journal’s Web site, www.linuxjournal.com.
Also, select articles from the print magazine
are available on-line. Magazine subscribers,
digital or print, receive full access to issue
archives; please contact Customer Service for
further information, subs@linuxjournal.com.

FREE e-NEWSLETTERS: Each week, Linux
Journal editors will tell you what's hot in the world
of Linux. Receive late-breaking news, technical tips
and tricks, and links to in-depth stories featured
on www.linuxjournal.com. Subscribe for free
today, www.linuxjournal.com/enewsletters.

http://www.linuxjournal.com
http://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
http://www.linuxjournal.com/digital
mailto:ljeditor@linuxjournal.com
http://www.linuxjournal.com/author
http://www.linuxjournal.com/advertising
mailto:ads@linuxjournal.com
http://www.linuxjournal.com
mailto:subs@linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/enewsletters

http://www.uniwide.com

12 | november 2007 www.l inux journa l .com

UPFRONT
N E W S + F U N

Linus Torvalds
has expressed keen
interest in finding
someone to put
together a full git
repository of the
kernel, going all

the way back to version 0.01. He’s
tried this himself a couple times, and
other folks have made various efforts,
but it’s a hard problem. Certainly, it
would not be possible to include every
patch that went into the kernel, in the
order it was included, because many
patches never were sent to any public
forum. Even finding the release
announcements for all the numbered
versions will be difficult, and some
official releases are thought to be lost
as well. It’s a daunting task, but a very
valuable one, even if done incompletely.
If someone can do it, Linus has offered
to comment the various early patches
and releases, from memory.

Mingming Cao has submitted
patches to allow the ext4 filesystem
to perform checksum calculations on
its journal to make sure that any cor-
ruption is identified as quickly as possi-
ble. With interest from various folks,
including Andrew Morton, it looks
like this feature quickly will be adopted
into the official tree, although ext4 still
remains a fairly experimental filesystem.

LinuxConf Europe 2007 (LCE) will
host a semi-formal discussion of con-
tainers within the kernel. Serge E.
Hallyn recently announced plans to
arrange for a conference room (includ-
ing phone lines for anyone who can’t
be present but still wants to partici-
pate) and a series of half-hour presen-
tations. Containers provide a way to
cluster processes into specific name-
spaces that are isolated from the rest
of the system and are related to
virtualization projects like Xen.

Michal Piotrowski has announced
the “Linux Kernel Tester’s Guide”,
translated by Rafael J. Wysocki, at
www.stardust.webpages.pl/files/
handbook/handbook-en-0.3-rc1.pdf.
It is a long document representing
much work, it reads like a book, and
it clearly explains a lot of material that
most discussions on the linux-kernel

mailing list tend to assume—for
example, how to do a binary search
with git to identify precisely when
a particular bug was introduced into
the tree.

Several projects have changed
hands recently. Valerie Henson has
had to abandon the Tulip driver, and
now it looks like Kyle McMartin may
become the official maintainer. Wim
Van Sebroeck has submitted a patch
to make Mike Frysinger the official
maintainer of the Blackfin Watchdog
driver. Mike Sharkey of Pike
Aerospace Research Corporation
has volunteered to take over the
otherwise unmaintained Parallel Port
driver on behalf of his company.
And, Anton Vorontsov recently
became a co-maintainer of the
Power Supply subsystem, along
with David Woodhouse.

Over time, various features have
gone into the kernel to support more
and more modern architectures. But, for
some of these features that have no seri-
ous negative impact on older hardware,
such as the 386 processor, there’s been
no real effort to isolate the unneeded
features from that older hardware.
Kernels compiled for those systems,
therefore, have tended to have larger
and larger binaries and to require more
and more RAM to run. For the most
part, no one notices or cares, because
most people don’t bother running Linux
on the 386 anymore. But, the effect has
been there, building gradually.

Jonathan Campbell recently
started submitting patches to ensure
that architectures like the 386 would
compile only features that actually
would work on those systems. So,
things like the Pentium TSC register
would not be included in compiled
386 kernel binaries. The result of his
work was a much smaller binary, and
his patches probably will be adopted
into the main kernel tree. This kind of
support for legacy systems might have
an impact on projects to bring com-
puting resources to third-world coun-
tries and impoverished neighborhoods
or lower the cost of experimenting
with clustered solutions.

— Z A C K B R O W N

WHAT’S NEW
IN KERNEL
DEVELOPMENT

diff -u

LJ Index,
November 2007
1. Average measured speed in MBps of a

broadband connection with “up to 8Mbps”
download speed: 2.7

2. Lowest measured speed in KBps of a
broadband connection with “up to 8Mbps”
download speed: 90

3. Number of consumers out of five who get
the broadband speed they signed up for: 1

4. Percent of surveyed consumers who have
felt misled by providers’ advertising: 30

5. Billions of Internet users in 2006: 1.1

6. Additional millions of Internet users expected
by 2010: 500

7. Millions of video streams per day served by
YouTube: 100

8. Number of surveillance cameras in London: 200

9. Trillions of bits sent by London surveillance
cameras to their data center: 64

10. Terabytes accumulated per day by Chevron: 2

11. Total exabytes of data in 2006: 161

12. Multiple in millions of 2006 data total to
all information in all books ever written: 3

13. Percentage of the digital universe that will
be created by individuals by 2010: 70

14. Percentage of the current digital universe
that is subject to compliance rules and
standards: 20

15. Percentage of the current digital universe
that is potentially subject to security
applications: 30

16. Exabytes of “user-generated content”
expected by 2010: 692

17. Total exabytes of data expected by 2010: 988

18. Percentage of the 2010 digital universe for
which organizations will be responsible for
security, privacy, reliability and compliance: 85

19. Exabyte capacity of media ready to store
newly created and replicated data in the
2010 digital universe: 601

20. Year in which the amount of information
created will surpass available storage
capacity for the first time: 2007

Sources: 1, 2: which.co.uk, sourced by David
Meyer for ZDNet UK | 3, 4: moneysupermarket.com,
sourced by David Meyer for ZDNet UK | 5–20:
“Expanding the Digital Universe”, by John F.
Gantz, et al., a March 2007 IDC whitepaper

http://www.stardust.webpages.pl/files
http://www.linuxjournal.com

http://www.emperorlinux.com

[UPFRONT]

The first shoe dropped in September 2005,
when ACCESS Co. Ltd. of Japan announced
that it would acquire Palm OS developer
PalmSource for $324 million. The next shoe
dropped in February 2006, when PalmSource
detailed the ACCESS Linux Platform (ALP), as
an environment open to running Palm OS
binaries and Java applications, in addition to
native Linux apps. Enough other shoes have
dropped since then to give the clear message
that ALP has legs. The latest was at
LinuxWorld Expo in August 2007, when the
company showed screenshots of an iPhone-
like UI and provided more details around its
plan to make Linux the most supportive envi-
ronment for mobile device and application
development. Chief among these is the Hiker

Application framework that fills in some of
the formerly missing APIs for mobile applica-
tions. Hiker originally was available through
the MPL (Mozilla Public License), but it
reportedly will be dual-licensed with the
LGPL (v2) license as well.

Looking beyond the superficial resem-
blances between what ACCESS showed and
the now-familiar iPhone, it’s clear that the
mobile application market will divide between
Web-based (iPhone) and native OS-based
(ACCESS, OpenMoko, maemo)—with the
latter embracing legacy apps developed for
other platforms as well. Thus, the pavement
gets wider on the road to truly open mobile
devices and markets that grow on them.

— D O C S E A R L S

Brad Fitzpatrick has a long pedigree for a young
guy. Besides creating LiveJournal—one of the
earliest and most popular blogging services (and
an open-source one at that)—he is the creator
of OpenID, Perlbal, MogileFS, memcached,
djabberd and many other fine hacks. Astute
readers may recall “Distributed Caching with
Memcached”, which Brad wrote for Linux
Journal in 2004. Today, memcached is one of
the world’s most widely used distributed caching
methods, while OpenID is a breakaway leader in
the user-centric identity field.

In August 2007, Brad published “Thoughts
on the Social Graph” (bradfitz.com/
social-graph-problem), which presents
this problem statement:

There are an increasing number of new

“social applications” as well as tradi-

tional applications that either require

the “social graph” or that could pro-

vide better value to users by utilizing

information in the social graph. What

I mean by “social graph” is the

global mapping of everybody and

how they’re related, as Wikipedia

describes it (en.wikipedia.org/wiki/
Social_graph). Unfortunately, there

doesn’t exist a single social graph (or

even multiple graphs that interoperate)

that’s comprehensive and decentralized.

Rather, there exists hundreds of disperse

social graphs, most of dubious quality

and many of them walled gardens.

At the time, Wikipedia’s “social network”

entry (same as its “social graph” entry) said,
“Social network analysis views social relation-
ships in terms of nodes and ties. Nodes are
the individual actors within the networks, and
ties are the relationships between the actors.”
Elsewhere in Wikipedia, “Graph” is explained
as a mathematical concept, “a set of objects
called points, nodes, or vertices connected by
links called lines or edges”.

So, the first idea is to move the center of
social networking gravity outside the silo’d sites,
each of which impose inconveniences on them-
selves as well as their members. As Brad says,
“People are getting sick of registering and re-
declaring their friends on every site.” The pro-
cess is also silly. Not long after Google’s Orkut
social network site went up, Rael Dornfest
made fun of the friendship-declaring protocol
by walking up to people he knew and saying,
“You are my friend? Yes or no?”

The second idea is to make society itself
a platform. Or, in Brad’s terms, to “make the
social graph a community asset”, and “to build
the guts that allow a thousand new social
applications to bloom”.

Significantly, most social network sites (all
but MySpace, I believe) run on Linux. Wikipedia
too. If Brad’s right, we can equip the rising social
network tide that lifts all boats. There should
even be plenty of work converting today’s silos
into tomorrow’s arks.

For more, visit bradfitz.com/
social-graph-problem, or just look up “social
graph” on the vast Linux hack called Google.
The lucky top result probably will be Brad’s.

— D O C S E A R L S

From ACCESS to Excess

Raising the Social Tide

[UPFRONT]

The forces at Acme Systems and KDev,
two veteran embedded Linux system
and software developers based in Italy,
have conspired to bring the world SMS
FoxBox. It’s a Linux-based box dedicated
to sending and receiving SMS messages
that can be managed through a Web
interface. It can handle up to 30 incom-
ing messages at a time on a common
SIM card. It also works as an SMS to
TCP/IP gateway, so you can combine
SMS messaging with network and user
applications. You can SMS to and from
e-mail, MySQL, Web scripts, desktop
widgets, whatever.

SMS FoxBox is ideal for use in Live
Web conditions. Broadcasters can use
it to interact with their audiences.
Emergency services can use it to flow
live reports onto Web sites or broad-
casts. Lightweight monitoring, alarm
sending, trouble ticketing and remote
device management can be moved to
SMS from other methods. Databases
and address books can be kept current.

The unit comes with a GSM quad-
band modem, an SD/MMC card for

storing messages (it comes default with
a 512MB card). It runs on the 2.6 Linux
kernel, has a BIS module for failover to
up to two backup appliances and an
internal clock with a backup battery
and NTP support.

By the way, you might remember
Acme as the source not only of the tiny
Acme Fox embedded Linux system
board, but for its optional Tux Case as
well. Today, that also can come with an
Acme Fox SBC (single-board computer).
With Kdev’s FoxServe firmware, it can
work as a dynamic Web server (Apache,
PHP, SQLite, SSL/TLS and so on).

Resources
Acme Systems: www.acmesystems.it
KDev: www.kdev.it/joomla
Company Visuals:
www.kdev.it/HTDOCS/press.html

— D O C S E A R L S

Bring SMS to the Live
Web with a FoxBox

Acme’s SMS FoxBox

Acme’s Tux Case (Showing Separate Parts)

http://www.acmesystems.it
http://www.kdev.it/joomla
http://www.kdev.it/HTDOCS/press.html
http://www.shoprcubed.com

[UPFRONT]

Keijo Lähetkangas has a fun job at Nokia:
taking the company’s N800 handheld com-
puter (subject of our September 2007 cover
story) and turning it into the brains, faces and
controllers of Robot pets. His Puppy and a
four-wheeled Rover companion were stars in
the demo room at this year’s Guadec confer-
ence in Birmingham (UK). Puppy is remark-
ably flexible and expressive. It walks, sits,
smiles, dances, sleeps and even—how can we
put this politely?—lifts one leg (meaning that
Puppy is a male, or at least acts like one).

Several Guadec attendees compared
Puppy with Sony’s Aibo, the most notable
difference (besides looks) being the Puppy’s
openness. It’s a pure DIY pet—make of him

what you like. Also, Aibo had no eyes. Puppy
not only has eyes on his display, but he also
can look at the world through the N800’s
built-in camera, which is in a barely noticeable
black cylinder that pops out the side of the
N800. It got confusing to take pictures of
Puppy and Rover while they took pictures
of me, which appeared on other N800s
over wireless connections.

Puppy and Rover’s non-N800 hardware
is all from the Robotics.com catalog. The
controlling software, all open source, is at
https://garage.maemo.org/projects/robot.
You also can see Puppy in action at
youtube.com/puppyrobot.

— D O C S E A R L S

If our customers buy bandwidth from us, and they want to share it with
neighbors, or publicly, that doesn't make them bad customers.
—Joe Plotkin, Bway.net, www.businessweek.com/technology/content/jul2002/
tc2002073_1130.htm

...the commercial concerns from the very beginning, even when they were small,
were really very important. The commercial distributions were what drove a lot
of the nice installers, and pushed people to improve usability....I think commer-
cial users of Linux have been very important in actually improving the product.
I think all the technical people who have been involved have been hugely
important, but I think that the kind of commercial use that you can get with the
GPLv2 is also important—you need a balance between pure technology, and the
kinds of pressures you get from users through the market....If you have a purely
marketing (or customer) driven approach, you end up with crap technology in
the end. But I think that something that is purely driven by technical people will
also end up as crap technology in the end, and you really need a balance here.
—Linus Torvalds, www.linuxworld.com/news/2007/
080907-torvalds-on-linux-ms-softwares.html?page=2

It's exciting to go to work each day knowing that scads of companies are using
your software, then contacting you to get additional value. It's not easy by any
stretch, but it's a lot more efficient and productive than the proprietary model.
—Matt Asay, blogs.cnet.com/
8301-13505_1-9762210-16.html?part=rss&tag=feed&subj=TheOpenRoad

They Said It

Frisky N800 Hack

https://garage.maemo.org/projects/robot
http://www.businessweek.com/technology/content/jul2002
http://www.linuxworld.com/news/2007
http://www.linuxjournal.com/digital

http://www.coraid.com

18 | november 2007 www.l inux journa l .com

�� Show Date or Time, Past or Future
When working on Linux/UNIX platforms, I frequently find it useful
to obtain the date and time in the past or future. Whether
scheduling jobs, searching for files from a certain date or deter-
mining the day on which a certain date falls, countless scenarios
need a routine to compute and display the date and time in the
past or future. I searched for a suitable program, but ultimately
had to write one myself. This program is called showdate. It is
written in the C language originally on UNIX and has been ported
over to Linux as well. You can download the code from the LJ FTP
site: ftp.linuxjournal.com/pub/lj/listings/issue163/9877.tgz.

After obtaining the source code, assemble the showdate
executable using an ANSI C compiler (either cc or gcc) as shown:

cc showdate.c -o showdate

Store the executable in /usr/local/bin or a directory of your choice,
and invoke it without any arguments to obtain usage:

showdate

usage: showdate

[-y [+|-]years]

[-m [+|-]months]

[-d [+|-]days]

[-h [+|-]hours]

[-M [+|-]minutes]

[-s [+|-]seconds]

[-e | -f format]

showdate recognizes the following command-line options
and arguments:

� -y [+|-]years: Number of years in the past (-) or future (+) offset
from the current year.

� -m [+|-]months: Number of months in the past (-) or future (+)
offset from the current month.

� -d [+|-]days: Number of days in the past (-) or future (+) offset from
the current day.

� -h [+|-]hours: Number of hours in the past (-) or future (+) offset
from the current hour.

� -M [+|-]minutes: Number of minutes in the past (-) or future (+)
offset from the current minute.

� -s [+|-]seconds: Number of seconds in the past (-) or future (+)
offset from the current second.

� -e: Display the time elapsed in seconds since the UNIX epoch
(January 1, 1970 UTC).

� -f format: Display the date and time according to formatting
directives specified in format.

Options e and f are incompatible. Specifying them together
on the command line terminates the program abnormally. The
default output of showdate can be tweaked with the formatting
directives and argument to -f, which are identical to the ones
used by the standard date command. The important thing is that
all computations are performed by taking either a positive (future)
or negative (past) offset from the current date and time (now),
which is its datum.

A good way to become familiar with any tool quickly is to under-
stand how it is used. For example, the command to display the date
and time ten years ago, relative to now, would be (output of showdate
has been omitted as the results depend on the value of now):

showdate -y -10

To find out the epoch seconds elapsed for the above scenario, use:

showdate -y -10 -e

A futuristic date of five years, two months and 23 days from
now in the YY-MM-DD format would be output as shown below.
The plus sign is optional for future dates and the two forms of the
command line below are equivalent (the minus sign is mandatory
for past dates):

showdate -y +5 -m +2 -d +23 -f %Y-%m-%d

showdate -y 5 -m 2 -d 23 -f %Y-%m-%d

The options can appear in any order, as long as their contextual
usage is unambiguous; therefore, the command line above could be
written as:

showdate -m 2 -f %Y-%m-%d -d 23 -y 5

The +- offsets can be combined in a single command line; howev-
er, mixing them up can lead to unexpected and erroneous results. If
now is January 1st 2003 12:00:00 AM UTC, showdate outputs:

showdate -m -8 -M 32

Wed May 1 00:32:00 2002

The above command displays the date and time in the past—
eight months ago but 32 minutes from now, while the one below
displays the date and time in the future—8 months from now but
32 minutes ago:

showdate -m 8 -m -32

Sun Aug 31 23:28:00 2003

TECH TIPS
Display date and time in the past or future and pop through directories easily.

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 19

The capabilities of showdate can be leveraged to specify sub-
minute job scheduling times. A quick way to schedule a batch job 12
minutes and 35 seconds from now would be:

showdate -M 12 -s 35 -f %Y%m%d%H%M.%S | xargs at -f job-file -t

The current date and time is tracked as the number of seconds
that have elapsed since the epoch. This number is stored in a signed
long, which means that on a 32-bit system, the timekeeping will break
on Tuesday January 19, 2038 at 03:14:08 UTC, when the value over-
flows and becomes negative. An error is returned if the desired date
and time exceeds this limit as shown here:

showdate -y 1000

showdate: required time exceeds system limit

The presence of whitespace characters in the formatting directive
needs to be escaped or enclosed in quotes (single/double). So, the
command to display the date and time 18 hours, 30 minutes ago in
Year-Month-Day Hour:Minute:Second format would be:

showdate -h -18 -M -30 -f "%Y-%m-%d %H:%M:%S"

showdate cannot obtain the date and time by specifying a
weekly offset and by taking a positive or negative offset from
any datum, not just the current date and time. Even though
showdate has been tried and tested rigorously, it is not perfect.
And, if anyone encounters a bug or feels that redesigning the
algorithm, implementing coding shortcuts or efficiently using
system resources can improve the program, please contact me
by e-mail at ssahore@yahoo.com.

showdate was designed for computing and displaying the date
and time in the past or future depending on the command-line
options, specified as an offset from the current date and time. The
next step would be to augment showdate to specify weeks and the
ability to change its datum.
—Sandeep Sahore

�� Push and Pop dirs
The dirs command, combined with pushd and popd, is very effective
for tracking users’ directory changes. Suppose you have to make some
changes to the files present in the following directories:

� /home/sangeeth/soft/release2/src/

� /home/sangeeth/soft/release2/src/show/

� /home/sangeeth/soft/release2/doc/

Instead of noting down the directories on paper, do the following:

$ pushd /home/sangeeth/soft/release2/src/

$ pushd /home/sangeeth/soft/release2/src/show/

$ pushd /home/sangeeth/soft/release2/doc/

To list all the directories, do the following:

$ dirs -l -p -d

Suppose you make all the required changes in the first directory
(/home/sangeeth/soft/release2/src/). To remove that directory entry
from the list of directories that you created earlier, do the following:

$ popd

The above command removes the topmost directory entry
(/home/sangeeth/soft/release2/src/) and performs a cd to the new
top directory, which in my case, will be the second directory
(/home/sangeeth/soft/release2/src/show/).

Alternatively, one can pop a particular directory from the list of
directories by giving the directory ID (the ID is displayed beside a
directory when using dirs -l -p -d) to the popd command:

$ popd +1

More options available for using the above commands can be
found by viewing the man pages.
—Sangeeth Keeriyadath

TECH TIPS

http://www.linuxjournal.com
mailto:ssahore@yahoo.com
http://www.emacinc.com

http://www.pure-linux.com

http://www.infi-tech.com/pure64

22 | november 2007 www.l inux journa l .com

People are surprising and unpredictable. In the computer
industry, you hear this in nearly every interview with the
designer of a popular software package. For example, Perl
originally was designed for network programming and text
processing. This made it an obvious choice for Web pro-
gramming, but Larry Wall certainly didn’t know or expect
that when he first wrote the language, years before the
Web was invented.

Users of a software package almost always will push
its limits. That’s why some of the most successful and
popular programs are those that encourage users to go
beyond the author’s imagination. In the early days of the
software industry, such add-ons and plugins didn’t exist,
which meant that the only way to get new functionality
was to lobby the authors and then hope the next release
would include the needed features. In the world of open-
source software, anyone is theoretically able to add new
features, but between the generally small number of core
developers and the famously loud debates that sometimes
erupt, it can take surprisingly long to add a new feature.
(And although it is always possible to fork a project, this
has social and technical drawbacks that often outweigh
the benefits.)

Some programs have a long tradition of encouraging
add-ons. GNU Emacs is best known as a text editor, but it
comes with a full-fledged version of the Lisp programming
language. You can create just about anything you want in
Emacs, and people have done so, including mail-reading
programs, Web browsers and an extremely sophisticated
calendar/diary. Photoshop caught on among graphic
designers not only because of its powerful image editing
features, but also because of the large number of plugins
that were developed (and sold) for the platform. Microsoft
Office, much as it might be reviled by many Linux and
open-source advocates, became popular because of its
built-in programming language (VBA), as much as for its
built-in features. And, of course, the Firefox browser
wouldn’t be half as useful to me if it weren’t for the
half-dozen plugins that I have added to my software.

So, users push software to the limits, and software
publishers have been able to make their offerings
more useful by making it possible to extend their
programs. How does this translate into an era of
Web-based software? And, what does this mean to
us as Web developers?

The answer is the increasingly ubiquitous application
programming interface, or API. If you want your Web site
to be taken seriously as a platform, and not just an appli-
cation, you need to offer an API that lets users create,
modify and extend your application. APIs are becoming an

increasingly standard part of Web-based applications, but
despite everyone’s use of the term API, that acronym
means different things to different people.

Starting next month, I’m going to look at the latest
batch of APIs that sites such as Facebook are offering. But
this month, I want to take a step back and consider the
different types of APIs that software publishers offer. This
is useful if you intend to extend, use and work with those
APIs. Web development is increasingly a matter of tying
together existing functionality from other sites, and
understanding these APIs can be quite useful.

It’s also important for Web developers to understand
the nature of APIs. If you want to create the next
Facebook or Google, you’re going to need to create more
than a winning product. You’re going to need an ecosys-
tem of developers and third-party software around your
core product. One of the best ways to do this is to create
and promote APIs, letting people use your application as
a platform, rather than a standalone program. By looking
around and seeing what others have done, we can get a
better sense of just what the possibilities are and how
we might use them.

Read-Only Protocols
In the beginning, when Tim Berners-Lee invented the
Web, he imagined it as a read-write medium. But for
most people who used the Web during the first decade,
it was a read-only medium. You could view Web sites with
your browser, fill out forms with your browser, and that
was about it. There was no API for reading Web sites; if
you wanted to read the content of a site programmatical-
ly—for example, in order to create a searchable index of
all Web content—you needed to create your own “spider”
program, as well as teach it to take apart the HTML.

This changed in the late 1990s, when a number of
developers (most prominently, but not exclusively, includ-
ing Dave Winer) created RSS, standing either for really
simple syndication or RDF site summary. In either case,
the idea was to create a machine-readable, frequently
updated summary of a site’s contents. By checking a
site’s RSS feed, you could learn whether there had been
any updates. More significant, RSS feeds were formatted
in a standard way, with standard tags, making it fairly
easy for programs to poll a feed and extract only the
information they wanted.

Unfortunately, the term RSS became both the generic
term for syndication and the name for several incompati-
ble (but similar) formats for syndication. A separate group
of developers created the Atom protocol, which many
people believe is superior to all of the various RSS formats.

Thinking about APIs
The historical evolution of Web sites into applications.

AT THE FORGE
COLUMNS

REUVEN M. LERNER

http://www.linuxjournal.com

RSS and Atom are still popular today. The most
common use of these syndication feeds is for blog and
news updates, allowing users to keep track of which
sites have updated their content. But, RSS and Atom
can be used in other ways as well, providing a simple,
reliable and machine-readable version of various types
of data from a Web site. If you are looking to broadcast
regularly updated data, RSS and Atom probably are
going to be a good starting point.

For example, the well-known development company
37signals provides an Atom feed of recent activity in its
Highrise contact management system. As helpful as it
might be to look at your own feed, it would be even
more helpful to aggregate multiple people’s feeds into a
single viewer, allowing, for example, a manager to get
a sense of what (and how much) employees are getting
done each day.

Read-Write Protocols
The idea that a Web site could provide a regularly updated,
machine-parseable version of its content whetted the
appetite of many developers for more. Many developers
wanted a method to add and modify data, as well as

retrieve it.
This came in several different forms, all of which still

are used today. The first was XML-RPC, a simple RPC
protocol that used HTTP to send an XML-encoded func-
tion invocation on a remote server. The server turned
the XML-RPC request into a local function call and sent
the result of that call (or an error message) in an XML-
encoded response. The good news was (and is) that
XML-RPC is simple to understand and use, that there
are implementations in many different languages, and
that they are generally compatible and interoperable.

At the same time, XML-RPC was unable to handle
some of the more complex data types that people wanted
to use. Plus, it didn’t have the official seal of approval or
complete standard that would have been necessary for it
to enter the corporate arena. So, some of the original
XML-RPC developers created SOAP (originally known as
the Simple Object Access Protocol, but now an acronym
that doesn’t expand). SOAP is more sophisticated and
complete than XML-RPC, but it had a great many issues
with compatibility, implementation and complexity. Today,
there are SOAP implementations for many languages, and
it continues to be used in a variety of ways, despite some

978-0-470-08291-1 978-0-470-08292-8 978-0-470-08293-5

Take a look inside the
Linux® toolbox.

Available wherever books are sold.
Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. All other trademarks are the property of their respective owners.

compatibility issues.
But, at the same time that XML-RPC and SOAP were

being touted as the foundations for a new type of interac-
tive, machine-parseable Web, along came Roy Fielding,
who described the current state of affairs as unnecessarily
complex. He proposed that instead of using XML in
both the request and the response, we instead use
Representational State Transfer (REST). In other words,
the URL should contain everything needed to describe
the request, without any additional XML markup or
payload. The response, of course, could be in XML or
any other format.

The idea of published Web services, procedures
invoked via HTTP and URLs that transferred data in XML
and other formats, soon became widespread. Creating
and using Web services became the biggest thing, with
every company talking about how it would take advantage
of such Web services. Many standards were proposed for
describing and finding Web services; for all I know, these
standards still exist, but for the average programmer, they
don’t, and I’m not sure if and when they ever will.

Read-Write APIs
Given two read-only protocols and three read-write proto-
cols, it was a matter of time before people started to
create applications that would take advantage of these.
Amazon was one of the first companies to do so, opening
up its catalog in a set of Web services now known as
Amazon E-Commerce Services, or ECS. Amazon made its
entire catalog available via ECS, and it allowed program-
mers to choose between SOAP and REST. Over the years,
ECS has become an increasingly sophisticated and capable
system, making it possible to retrieve particular slices of
Amazon’s catalog and pricing information.

But, retrieving information from Amazon is only half
the story: Amazon also makes it possible to manage a
shopping cart via ECS and even has some facilities for
managing third-party products for sale. Amazon has made
a huge commitment to ECS, and a large community of
developers and third-party software vendors now exist
around this facility. By turning Amazon into a platform for
software development, rather than a simple on-line store,
Amazon simultaneously has made a community of people
dependent on ECS and has created opportunities for the
creation of software applications that otherwise never
would have been built.

eBay, Google and Yahoo! (among others) also have
provided a number of APIs via Web services, which devel-
opers can use and access using various protocols. I’ve
read reports, which I can’t confirm but that I’m willing to
believe, claiming the majority of requests submitted to
eBay’s servers are through its Web services. Given that
most eBay users are not technically sophisticated enough
to create their own HTTP clients, we may assume there
are a number of software development shops that see
eBay as a distribution platform, much as others might
see Windows or Linux as their platform.

Google also has exposed a number of its applications
to read-write APIs. Rather than use one of the existing
protocols, Google uses a version of Atom for both
requests and responses, along with a data format it calls
GData. There are read-write APIs for a number of Google’s
applications, including the calendar, Blogger and the
spreadsheet program. Programmers no longer are limited
by the interface that Google provides to their spreadsheet
data; they may create their own programs that use the
spreadsheet for storage and retrieval. (One slightly far-
fetched example would be the creation of a distributed
database server that depended on Google’s spreadsheet
for locking and version control.)

Although new APIs of this sort constantly are being
rolled out, the trend has seemed clear. Make the data
easily available and downloadable by the users, in a
variety of formats. And, make it possible for them to
interact with your Web-based application either using
your Web site or (alternatively) the command line or
their own home-grown application.

Facebook
Facebook, the social networking site started by Mark
Zuckerberg, has become an extremely popular application
on the Web. Facebook users can connect with friends, join
groups of like-minded individuals and send messages to
others. Early in 2007, Facebook became popular among
developers, as well as users, for creating a developer API
that goes far beyond the APIs I have described above. In a
nutshell, Facebook invited developers to create and deploy
new applications that are seamlessly integrated into the
full Facebook experience.

Facebook isn’t the only site that lets you incorporate
your own code into the site. However, the style and
methods of this integration are deeper on Facebook than
I have seen elsewhere. In the Facebook model, your Web
application still resides on your server, but its output is
displayed inside the user’s Facebook page, alongside
other Facebook applications. This definitely is something
new and exciting; I can’t think of any other Web sites
that make it possible for an independent developer to
distribute code that integrates into the Web site. The fact
that you can use whatever language and platform you
prefer, communicating with Facebook in a certain way,
marks the beginning of a new kind of API, one in which
users can affect the Web service as seen by all users, not
just one particular user. The only other site I can think
of in this camp is Ning, Marc Andreessen’s build-your-
own-social-network site.

Moreover, Facebook has taken a page from Amazon
and eBay, telling developers that they can go wild, using
the Facebook network for commercial as well as nonprofit
reasons. Google has had a long-standing policy of allowing
access to its maps, for example, but only for publicly
accessible Web sites and reasons. It remains to be seen
whether Facebook’s API will continue to be free of charge
and open to all.

24 | november 2007 www.l inux journa l .com

AT THE FORGE
COLUMNS

http://www.linuxjournal.com

Something this sophisticated cannot use any one of
the protocols that I mentioned above. Rather, Facebook
uses a combination of protocols and techniques to com-
municate with your Web application, making it possible
for your programs to display their output alongside other
Facebook applications. Moreover, Facebook makes it possi-
ble for your application to grab certain pieces of the user’s
Facebook data, so even though your application doesn’t
have access to the back-end Facebook database, it still can
know (and display) something about the user’s friends.
Your application even can send messages and notifications
to the user’s friends, although Facebook has discovered
that this can lead to spamming, so it remains to be seen
exactly what happens on this front.

Conclusion
Web sites used to be nothing more than an electronic
method for publishing and reading basic information
encoded in HTML. But, Web sites evolved into applica-
tions, which spawned the first generation of APIs that
made it possible to read and write your data. Facebook is
the first of the new generation of Web sites that look at
themselves as a platform more than an application.

And, although Amazon, Google and eBay have
demonstrated the importance and potential of a platform-
centric view, Facebook is pioneering the incorporation of
third-party applications. True, most Facebook applications
created to date are simple or trivial. But, we can expect
that these applications will become increasingly sophisti-
cated and useful over time. Facebook’s willingness to open
up to third-party developers is good for everyone—except
for competing sites, such as MySpace and LinkedIn, which
still appear to see themselves as standalone sites, rather
than platforms for new applications.

This month, I explained why I find Facebook’s API to
be new and exciting. Next month, we’ll look at how you
can create your own Facebook applications. Even if you
aren’t interested in creating applications for Facebook,
you owe it to yourself to see how the latest generation
of Web applications allow themselves to be modified,
not just queried.�

Reuven M. Lerner, a longtime Web/database developer and consultant, is a PhD
candidate in learning sciences at Northwestern University, studying on-line
learning communities. He recently returned (with his wife and three children) to
their home in Modi’in, Israel, after four years in the Chicago area.

26 | november 2007 www.l inux journa l .com

Repeat what you just told me, François. No! Don’t
tell me that! Yes, François, I know I told you to repeat
what you told me, but I was sincerely hoping I was
mistaken and that I had heard something entirely dif-
ferent. Something like, “Patron, I lost the key to the
filing cabinet”, not, “I lost the key to the wine cellar.”
In my first restaurant job, François, this would have
been considered a firing offense. No, mon ami, I am
not going to fire you, but this is terrible! What shall
we serve our guests?

Non! I see them walking toward the restaurant
now. Quickly, François, think of something. Why you?
Because you locked up the wine cellar minutes before
opening time, then proceeded to lose the key. That’s
why. Quoi? Serve beer from my personal réfrigérateur
de bière? That is not a bad idea at all, mon ami. You
live to serve another day, non? Don’t look so hurt,
François. We have guests. Quickly!

Ah, welcome, everyone, to Chez Marcel, where fine
Linux fare is served with the most excellent wines from
one of the world’s premier wine cellars—that is, except
tonight. It seems my faithful waiter has lost the keys to the
wine cellar. Never fear, mes amis, though I love that won-
drous liquid fruit of the grape, your Chef also enjoys a
good beer, be it lager or ale. So, tonight’s menu will be
accompanied by selections from my own réfrigérateur de
bière. Please, sit and make yourselves comfortable.
François can offer you several excellent selections, all
favorites of mine, including Alexander Keiths’ India Pale
Ale, Kilkenny Irish Cream Ale, Sleeman’s Original, Unibroue
Maudite and several others.

As you know, mes amis, this issue’s theme is high
performance, which we all know can refer only to rac-
ing and automobiles. If the words high performance
and Linux don’t immediately generate the same associ-
ation in your mind, you should know that in point of
fact, Linux and car racing go very well together. The
2007 Indianapolis 500 featured the first ever Linux-
sponsored car. The brainchild of Ken Starks, aka helios,
the Tux500 Project succeeded in its aim to raise
enough money to place Tux, the familiar Linux mascot
created by Larry Ewing, on the hood of an Indy car. For
more details, go to www.tux500.com.

In honor of this momentous event, the first race
game on tonight’s menu, SuperTuxKart, features the very
same Tux at the wheel. SuperTuxKart, maintained by
Joerg Henrichs, is an updated and enhanced version of
the original TuxKart, created by Steve Baker. If you’ve
played the original, you’ll be impressed by the new,
hugely improved, SuperTuxKart. The game features slick
new graphics, new tracks, cool characters, racing adven-
tures and more. You take the controls as one of several
characters, including Tux, Penny (his friend), Mr. Ice
Block, Sushi the Octopus (Figure 2), Yeti and others. You

Because Nothing Says
High Performance
Like a Good Race
Got Linux? Got a good accelerated video card as well?
Then, get behind the wheel and drive!

COOKING WITH LINUX
COLUMNS

MARCEL GAGNÉ

Figure 1. The Tux500 Indianapolis racecar—notice the logo on
the hood.

Figure 2. SuperTuxKart features some colorful characters,
many with equally colorful names.

http://www.tux500.com
http://www.linuxjournal.com

http://www.pogolinux.com

28 | november 2007 www.l inux journa l .com

COOKING WITH LINUX
COLUMNS

can get SuperTuxKart from supertuxkart.berlios.de.
Your next step is to choose whether you want to

race on your own (for practice) or enter a race with
other players. These can be other humans (masquerad-
ing as SuperTuxKart characters, of course), or they can
be computer AI players. Once your cast is assembled,
it’s time to select a race type and course. You can
indulge in a Grand Prix event that takes you through
all 13 courses, a handful, or simply go for a single race
and select a time trial.

Once you are lined up at the starting line, don’t be
too hasty putting the pedal to the metal or you’ll be
fined penalty points. Once you are off, your car can do
some interesting things besides drive. For starters, you
can momentarily jump above your competition and any
obstacles in your path. Keep moving and collect spin-
ning cubes along the way, as these contain things like
rockets, which you then can fire at opponents and
obstacles alike (Figure 3). Try to pick up the spinning
fish coins as well—a penguin’s gotta eat.

The courses in SuperTuxKart are fun, colorful and
imaginative. Race though an undersea lair, through the
shifting sands of the Egyptian desert or around obstacles
in Oliver’s Math Glass. And, don’t worry too much about
falling off the edge of the world or an altogether
psychedelic cliff. Your jumping/flying car will carry you
back to safety using its combination magnetic levitation
system and butterfly wings.

The next item on tonight’s menu is a great racing

game called VDrift. Created by Joe Venzon, VDrift is an
exciting game based on drift racing. The V in VDrift refers
to the Vamos Automotive Simulator, written by Sam
Varner. Vamos is the physics engine that powers the game.
Aside from being exciting and great fun to play, VDrift
comes with 19 world-class tracks and 28 different car
models. VDrift is available at vdrift.net.

In case you don’t know what drift racing is (your
humble Chef did not), it’s a form of racing where the
driver employs “drifting” to control the car. Doesn’t
help? Well, this quote from Wikipedia might clear
things up: “A car is said to be drifting when the rear
slip angle is greater than the front slip angle and the
front wheels are pointing in the opposite direction of
the turn.” In other words, the car is turning one way,
but the wheels are pointing in another direction. This,
strange as it may seem, this is not an accident.
Remember, the driver is in control. As the driver, what
you are doing is sliding into a turn to avoid slowing
down as much as possible.

When the game starts, you can select the car you want
and, in some cases, the color. Where you race is another
option. Choose a racetrack or go for a relaxing, high-speed

Figure 3. Explosions? They never told me there would
be explosions!

Figure 4. On the Track with VDrift against a Computer Player

Figure 5. VDrift lets you select from several different cars,
colors and racing venues.

Note:
All these packages are available as source code bundles from their respective
Web sites. Before you start compiling (unless you want to, of course), check
your distribution’s software repositories for binary packages. In all cases, I had
no trouble finding packages.

http://www.linuxjournal.com

http://www.pgroup.com

drive in the country. Practice races put you on the track with
no other cars to worry about. Races pit you against an
opponent. On a single computer, you can play VDrift alone
or against a computer opponent, at which point, you also
can decide on your opponent’s car model and color (Figure
5). VDrift also can be run as a server, at which point, your
friends can join in for a networked game.

Several option controls exist to make the game
more realistic, and more difficult, if you so choose. For
instance, you can decide what effect speed has on
steering by adjusting a slider to a desired percentage.
The higher the percentage, the more difficult it is at
high speeds. You also can choose to map different keys
for the gas pedal, brakes and steering. Shifting and
clutch controls can be defined as well. I confess that I
found it much easier to set up to use an automatic
transmission on my first few races. That brings up
another point—make sure you are in gear before you
start. It took me a few tries before I realized that I was
going backward. Press the S key to start, then press 1
to get in gear. If you have selected automatic, shifting
will happen automatically for you after this.

There are more options and settings, which I’ll let
you discover, but I do want to mention one other group
of settings that may be important. Given that this an
OpenGL game and that it does require hardware 3-D
acceleration, owners of somewhat less-powerful video
cards may find the game more responsive by toning
down some of the effects.

As you race, you can change your viewing angle by
pressing F1 through F5. If you find yourself totally taken
with the action on-screen and you feel the desire to pre-
serve the moment, you can get a screenshot of the action
at any time by pressing F12. Those images will appear in
the folder .vdrift/screenshots in your home directory.

The final item on tonight’s menu is the perfect selection

for those of you who experience a kind of mania when
it comes to racecar driving. The game, aptly named
ManiaDrive, is an incredibly fast-paced game with rapid
turns, nerve-wracking jumps (Figure 6) and a driving,
rocking, soundtrack (ManiaDrive is actually a clone of
Nadéo Studio’s Trackmania game). ManiaDrive features a
training mode designed to prepare you for the real thing
and a set of complex tracks that can be played locally or
on-line with other players. You can get ManiaDrive from
maniadrive.raydium.org.

When you start ManiaDrive, make sure you go
through the Beginner story, which will guide you
through the various moves that are expected of you.
When you are ready for the big time, choose the Pro
story mode. This game is more an endurance and skill
test than a race. Sure, there’s a clock ticking and your
speed is tracked (on-line, against others, no less), but
races last only a short time, some less than a minute.
If you are the type that gets bored quickly, ManiaDrive
is for you.

Speaking of fast, is it possible that the time has
gone by so quickly? Mon Dieu! And yet, it does appear
that closing time is almost upon us. Well, mes amis,
despite the apparent crisis that we apparently faced
tonight, I dare say the beer selection was most refresh-
ing. I can tell from your approving nods that you agree
with me. Nevertheless, tomorrow, I shall have the wine
cellar lock changed, and next time, our award-winning
cellar will once again be open. But for now, François
will pour you another beer that you may enjoy at your
leisure while you enjoy another race. Remember, mes
amis, that sitting in front of your Linux systems driving
a virtual car is the only way to drink and drive safely.
Raise your glasses, mes amis, and let us all drink to one
another’s health. A votre santé! Bon appétit!�

Marcel Gagné is an award-winning writer living in Waterloo, Ontario. He is the
author of the all-new Moving to Free Software, his sixth book from Addison-
Wesley. He also makes regular television appearances as Call for Help’s Linux
guy. Marcel is also a pilot, a past Top-40 disc jockey, writes science fiction and
fantasy, and folds a mean Origami T-Rex. He can be reached via e-mail at
mggagne@salmar.com. You can discover lots of other things (including great
Wine links) from his Web site at www.marcelgagne.com.

30 | november 2007 www.l inux journa l .com

COOKING WITH LINUX
COLUMNS

Figure 6. Yes, it is
exactly what it looks
like. There is a huge
gap in the road.
Hammer down, jump,
keep it straight and
keep your cool.

Resources

ManiaDrive: maniadrive.raydium.org

SuperTuxKart: supertuxkart.berlios.de

VDrift: vdrift.net

Marcel’s Web Site: www.marcelgagne.com

The WFTL-LUG, Marcel’s Online Linux User Group:
www.marcelgagne.com/wftllugform.html

mailto:mggagne@salmar.com
http://www.marcelgagne.com
http://www.linuxjournal.com
http://www.marcelgagne.com
http://www.marcelgagne.com/wftllugform.html

http://www.polywell.com/us/LJ

32 | november 2007 www.l inux journa l .com

Last month, I started talking about how to use some
simple shell scripting techniques to create a computer sim-
ulation of the popular dice game Yahtzee. I’m not going
to write the entire game (the computer player would be
darn complicated for a shell script, for one thing), but let’s
spend one more column looking at some of the basics of
scoring before we move on to other topics.

One nice thing about Yahtzee as a computer game is
that there really isn’t much work for the computer to do,
because the game works fine as a solitaire variation: you
simply can play to try to maximize your score and see how
you do, competing against your previous high score.

The basic idea of Yahtzee is that you roll five dice up
to three times to get the best possible set of values. Those
are then scored against a fixed score pad that offers spe-
cific points for specific combinations, ranging from one
point per “one” in your roll up to 50 points for five of a
kind (a “Yahtzee”, in game parlance).

A quick visit to Google identifies an on-line Yahtzee
score sheet; take a look at it before we proceed:
www.gamingcorner.nl/images/sheets/yahtzee-3.pdf.

In many ways, it’s five-card draw poker with dice, so
the first section of the score sheet is for sets: ones, twos,
threes and so on, where your score for each is the sum of
that value on the dice. The second section is other poker
hands, including three of a kind, four of a kind, small
straight (four of the five dice have sequential values), large
straight (all five are sequential), a full house and one or
more Yahtzee rolls.

You can get bonuses for achieving certain levels,
including a very nice 35-point bonus for attaining at
least 63 on the top section, but the score sheet itself
is straightforward.

The key to the game, then, is to figure out how to
score a given roll. If you roll four ones, do you want to
score that as your four of a kind or your ones? What if
they’re both filled in already? Fortunately, we’re going
to defer to the player for that, but that still leaves us
with the data question of how to model the different
boxes on the score sheet and the interface question of
how to prompt the user to select which box to score.
Let’s take a look.

Modeling the Score Sheet as an Array
As with most of these types of data structures, we’ll use
an array to model the score sheet. Count the boxes on the
score sheet, and you’ll see 13 boxes total, including the
special Yahtzee box where you can roll—and get credit
for—more than one (so a game typically has 13 rolls, but
it could have more).

If we initialize the game by filling in all the array values
with a known stop value, say -1, then the test for whether
a given box has been filled in is easy:

if [scoresheet[1] != -1] ; then

echo "1: Your one's" ; fi

The trick is that we also want to pre-qualify these
options. There’s no point in prompting players to select
their roll as a Yahtzee if they didn’t get five of a kind. This
proves to be a bit tricky, so as a first step, I’m going to
tweak the code to order the dice in the array in ascending
order after each roll automatically.

It might be a long trip to accomplish the task, but
rather than write a sorting routine in the script, I’m just
going to push out the task to the sort function, then read
the results back in and fit them into the individual slots of
the dice array. Sound complicated? It is, rather:

function sortDice()

{

sorted="$((echo ${dice[1]} ; echo ${dice[2]}

echo ${dice[3]} ; echo ${dice[4]}

echo ${dice[5]}) | sort)"

index=1

for value in $sorted ; do

dice[$index]=$value

index=$(($index + 1))

done

}

You can see here that I’m using a temp variable called
sorted to store the resultant values, and that I’m using a
subshell—that’s the $() notation—to do the actual work.
The hardest part of this little function is to figure out how
to put the values back into the array once everything’s
sorted properly, and that’s accomplished with the for loop.

Notice that, by a lucky coincidence, for loops automat-
ically step through fields separated by white space (spaces
and carriage returns), so it’s perfect for breaking the resul-
tant sorted sequence back into individual values.

We’re running low on space this month, and I’m afraid
I’ve ended up spending quite a bit of time talking, rather than
coding. I’ll make it up to you, dear reader, next month!�

Dave Taylor is a 26-year veteran of UNIX, creator of The Elm Mail System, and
most recently author of both the best-selling Wicked Cool Shell Scripts and Teach
Yourself Unix in 24 Hours, among his 16 technical books. His main Web site is at
www.intuitive.com, and he also offers up tech support at AskDaveTaylor.com.

Keeping Score in Yahtzee
Push an array sort out to the sort function instead of writing a sort routine.

WORK THE SHELL
COLUMNS

DAVE TAYLOR

http://www.gamingcorner.nl/images/sheets/yahtzee-3.pdf
http://www.linuxjournal.com
http://www.intuitive.com

Application-Optimized for:
Enterprises, Financial Services, Databases, Data Centers
Science Labs, HPC, Personal Super Computer

CMM Web-based GUI

Chassis Management Module

4x DDR Infiniband switch

CMM IPMI Viewwww.supermicro.com

Intel Processor Blade w/ 3.5 in.
Hot-swappable Drive Bays

AMD Quad Processor Blade

Much Better TCO than 1U Servers

Gigabit Ethernet Module

09_07SuperBladeLinuxJournalFA.aiPage 1 8/28/2007 4:43:14 PM

http://www.supermicro.com

34 | november 2007 www.l inux journa l .com

“Dead reckoning”, cried Davi. “What is that?”
I had been adjusting the compass of my sailboat, the

Agape, measuring for possible magnetic influences that would
affect the readings, and I had mentioned the dead reckoning
method of navigation to Davi. Now, I knew I was going to pay
the price of explanation.

“Dead reckoning is the method of determining where
you are by knowing where you have been, adding to that
the direction and speed you have been traveling, and the
length of time you have been going in that direction to
determine a new position. It was used for many hundreds
of years at sea”, I told him.

“Wow, that must have been hard”, said my young friend.
“And it must have generated many errors.”

“Yes”, I answered, “and the method was blamed for the
loss of hundreds of ships and thousands of lives, including the
wreck of the HMS Association and several other ships from the
British fleet off the Isles of Scilly on October 22, 1707—1,400
British sailors died.”

I continued, “This accident led John Harrison, a carpen-
ter, to develop the marine chronometer, a clock accurate
enough to calculate longitude easily while at sea. Harrison’s
life is a fascinating story of perseverance and hard work,
which led to many important inventions, including bi-metal
strips and the roller bearing. Unfortunately, England’s Board
of Longitude kept rejecting the work done by Harrison, citing
inaccuracies in the running of the clocks, and it was felt that
part of this rejection was because Harrison was a humble
carpenter and not a gentleman. Eventually, the king had to
intervene to see that justice was done.”

Aboard the Agape, e-mail is my prime method of commu-
nication, and lately, I have been receiving messages from Sun
Microsystems, telling me I should be switching from Linux to
Solaris. They cite many “reasons” for doing this, and although
some are features of Solaris that have not yet been incorporat-
ed into Linux, most of them reek of marketing hype.

The first message I received (May 25, 2007) told me
that “Solaris offers one thing Linux does—and 600 things
it does not. The Solaris OS is free and open source—same
as Linux.” Yet, nowhere in the rest of the message does
Sun identify those 600 things that Solaris offers. Nor could
I find them listed on Sun’s Web site where the links guided
me. Although the message does identify several features
that Solaris has “built in”, some of those features are
offered by major Linux distributions, and others can be
added by “rolling your own” in the Linux space.

Two of the major features Sun offers are “low-cost
licensing and support options” and “a disruption-free
migration path from the difficulties of a Linux platform to
the ease and value of a Solaris 10 solution”. Hmm, sounds
a bit like marketing hype to me.

Then, on June 27, 2007, I received another letter from Sun:

A lot of myths have been circulating about Linux—

that it’s low cost; that it runs more apps; that it’s

pervasive...but when you look at the facts you see

a different story.

Red Hat 5.0 does not save you money, runs fewer cer-

tified applications, and makes migration more difficult.

These are just three of the many compelling facts that

should make you wonder, “why are you running Linux

when you could be running Solaris 10 OS?”

Now, Total Cost of Ownership (TCO) studies abound
showing how Microsoft is cheaper than Sun, Sun is cheaper
than Linux, Linux is cheaper than Microsoft, and so on.
Normally, these TCO studies show whatever the sponsoring
company wants them to show, and it does not take heaps of
intelligence to realize that a TCO study that does not show the
desired “winner” would not see the light of day. Although
TCO is important (because if you cannot afford the solution,
you cannot implement it), the really interesting indicator is
Return on Investment (ROI) and long-term benefits, which I call
Value of Investment (VOI). VOI is usually what a company
wants for the long run.

Regarding the claim that Red Hat 5.0 “does not save you
money”, Sun offered one example of a solution offered to
Marc Andreessen. Sun’s solution was cheaper than “Linux on
Intel commodity hardware”. Okay, fine. But, this particular
customer also was Marc Andreessen, and having worked in
the UNIX Group at Digital Equipment Corporation (DEC) for
16 years, I can imagine the discussion between the various
management groups inside Sun to make sure it won this
account and to make sure it was “a good deal”, of which
there is no detailed analysis of the terms listed in the e-mail
or on the site. There is nothing wrong, illegal or even immoral
about this deal and its subsequent use in marketing (and
certainly not on Marc’s part); it’s just a bit opportunistic by
Sun to use a well-known name on a single deal to make its
point—not scientific, by any means.

As for the claim that Solaris supports more “certified
applications” than Red Hat v5.0, Sun used the application
base of its SPARC and its x86 architectures combined. How
many people want to run both a SPARC and an Intel box
just to get the complete suite of applications? Additionally,
the Solaris OS version had been out for a while, giving
independent software vendors (ISVs) a chance to certify
their applications. Red Hat’s v5.0 had been out for only a
month or so at the time of the “data effectiveness” cited in
an e-mail message on April 4, 2007. This is hardly enough
time for the ISVs to certify their software on top of Red

Navigating by the Sun
Lowest TCO for sale to highest bidder.

BEACHHEAD
COLUMNS

JON “MADDOG” HALL

http://www.linuxjournal.com

Hat’s newest release and and get it into Red Hat’s system. Again,
there’s nothing wrong or illegal, it’s just a little sleazy as a marketing
ploy—okay, more than a little sleazy.

Sun’s claim that Red Hat “makes migration more difficult”, brings about
the question “migration from what?” Last night, I went to my Linux user
group meeting, and the speaker, who was running a mixed Solaris and Linux
shop, lamented how hard it was to work on a Solaris system because of the
antiquated and nonstandard set of utilities on the upper levels of the operat-
ing system. His presentation confirmed some of the issues I knew about and
showed that being a Sun customer was not all peaches and cream. But then
again, I do not expect Sun’s marketing group to haul out the spoiled milk.

Sun also claims binary compatibility between releases, but when you
actually read Sun’s terms and conditions on binary compatibility, it basically
says Sun guarantees your program to run as long as you did not use any
interfaces that did not change or were not deleted. This is a guarantee? It
sounds like most of the warranties in the EULAs of most software products
I have seen—basically worthless.

I received a final e-mail message on June 28, 2007, inviting me to tell
Sun why I used Linux, and offering me a free 4GB iPod Nano if I came in
for a one-hour meeting to listen to why I should use Solaris. I would get
the iPod if I signed up and if I was qualified and if the number of iPods (25)
had not been depleted. Hmm, not that I even want an iPod, but what was
the chance of getting that iPod? That’s not illegal or immoral or even
sleazy—just marketing.

Why am I making a big deal about what obviously is a badly positioned
marketing campaign? After all, I was in the marketing group for DEC the
last eight years of my employment there. I know what it’s like in a large
company with many product groups and many marketing strategies that
often run in conflict with each other. I imagine some people inside Sun
really believe in FOSS and the community, and gnash their teeth whenever
they hear of such things. I even know one.

First, Sun purports to be a friend of the Free and Open Source
community and a reseller of Linux and Linux hardware. It has had four
of its server systems certified by at least one Linux distribution, and it
is listed as a Gold Partner of that Linux distribution. I assume that it is
making money doing this and perhaps even is selling services for those
servers and the Linux systems on them.

But, then I hear reports (and receive e-mail messages) that show this is
simply a bait-and-switch program—to get Linux customers onto its cus-
tomer list and convince them to switch to Solaris. With partners like this,
you really don’t need competitors.

Second, Sun has had a long and troubled history with maintaining the
consistency it brags about—corporate decisions that went in the face of
what its customer base really wanted, such as:

� The very painful migration of BSD SunOS to System 5.0-based Solaris,
and the needless renaming (and subsequent system administration
issues) of the BSD-based SunOS code base to Solaris 1.x (even though it
was the same code base).

� Supporting and then decommitting from Solaris Intel, not once,
but twice.

� Ignoring the fact that SPARC is big-endian and Intel is little-endian, so
that binary data often is incompatible. (“NFS takes care of that”, says
Sun at a tradeshow. “No, it does not”, says maddog back to them at
the same show.) Endianism was a point that Sun kept pushing as long

http://www.siliconmechanics.com

as Big-Endian machines were prominent in the market-
place, but it has ignored this ever since Intel/AMD reached
dominance and SPARCs were the poor kids on the block.

Third, Sun needs to decide what it wants to be when it
grows up. It continues to spend millions of dollars to duplicate
a base operating system, when it could be addressing cus-
tomers’ needs by better supporting the Linux community and
recognizing that the real enemy is a certain closed-source,
proprietary operating system from a company that does not
allow real competition. Sun needs to redefine its strategy and
become a solutions company (like IBM and HP are doing),
while not abandoning its line of VARs and resellers that made
Sun great. Sun needs to learn how to compete on the really
equal playing field that computer products are now proceed-
ing toward. It can do that, but only if it is smarter about it.

Fourth, Sun needs to clean up its marketing messages. It
claims to have been “founded as an open-source company”.
In reality, Sun was one of the companies that took UNIX into a
binary distribution model. Although it is true that this model
was somewhat forced by AT&T’s arcane licensing strategies of
the time, it was this movement of UNIX companies to restrict
the source code distribution that helped motivate Richard
Stallman to produce the GNU suite and the University of
California Berkeley to complete the first freely distributable
Berkeley Software Distribution.

I do not want to imply that Sun has never helped the
Open Source community or contributed to its well being.
Certainly, through time there have been stellar examples of
individuals at Sun that have contributed more than their share
to the community overall. But, let’s put it into the perspective
of a company that has had its share of proprietary,
closed-source products and standards wars.

Sun does have some good products. Its work in multicore
chips and multicore development tools (illustrated in an article
this month by Roman Shaposhnik, a Sun employee, on page
80) is a good example of Sun leveraging off its technologies.
Sun also has been doing some good work in environmentally
sound server systems and solutions.

Unfortunately, there is a big difference between having
good people working for you who believe in free and open-
source software and what the corporate, management and
marketing culture states is the direction of the company.

Here is my beef: I am a Linux Guy. I believe in free and
open-source software, and this means more than just the
open-source licenses that Sun offers. It means that customers
easily can contribute back to the path that Sun as a company
takes, and it means that customers easily can contribute
back to the code that Sun writes. It means that as a business
partner, I can feel free to propose my solutions to my
customers without having my partner run roughshod
over me. I have found my solution to free and open-source
software in the Linux kernel and the people and companies
building and contributing to it.

That said, when I engage customers, I engage them with
the concept of solving their problems, and I am not above
using a less-open solution than what I might otherwise find if I
think it is worthwhile for the customer’s VOI. I view this as a

tactical solution, although the strategic (and long-term) solu-
tion may still be FOSS. This even might lead to me advocating
a Solaris solution for my customer. But this is what I, as the
solution provider, work out with my customer.

On the opposite side, being a Linux Guy also means
that when I engage Sun as a supplier of Linux servers for my
customers, I want to feel safe that I can turn my back for a
moment and not have the Sun people who service or resell
those servers approach my customers and tell them that
my solution is bad, particularly when that story is based on
half-baked marketing messages with no staying power.

When I was at DEC, I was making fairly good money in
a fairly stable job with good benefits. I saw no issue in sell-
ing both Digital UNIX and Linux on the Alpha. What my
customers asked for, I sold them. When customers asked my
opinion, I gave them the best answer I could for their solu-
tion. At that time, Digital UNIX was a commercially robust
and feature-full implementation, and Linux lacked in a lot of
the features that Digital UNIX offered. I did not tell cus-
tomers to buy Linux or buy Digital UNIX, because they both
made money for Digital. I could, however, see the writing
on the wall. I knew that over time Linux would have all the
features of a fully robust commercial system, that it would
be used as the research arm for computer science, and that
companies pouring $200–300 million a year into developing
their “own version of UNIX” would not be able to compete
with an operating system and kernel being developed jointly
by many companies and many minds.

I left that stable job at DEC, because I believed in the Linux
community and the free software model, and because I
did not want to embarrass DEC by actively and aggressively
criticizing its biggest business partner, Microsoft.

Now, Sun runs the risk of alienating what could be its
biggest and best business partner, the Linux community,
including Linux VARs and Linux resellers.

Just as ships no longer use marine chronometers and
sextants to “follow the Sun”, but use GPS systems instead,
companies no longer guide their businesses with half-baked
marketing statements.

Sun’s marketing group needs to understand that this is no
longer the time of sailing ships and dead reckoning. You can-
not just start from where you have been and hope to end up
where you want by setting some course and sailing full steam
ahead. You will find yourself on the rocks.

The product era of computer science is sinking, and now
the era of service-oriented computing is well underway. Sun’s
marketing and business practices need to move into the 21st
century, and Sun needs a new vision for how it is going to
provide solutions for its customers and partners and move the
company forward. I really hope Sun finds it.�

Jon “maddog” Hall is the Executive Director of Linux International (www.li.org), a
nonprofit association of end users who wish to support and promote the Linux oper-
ating system. During his career in commercial computing, which started in 1969,
Mr Hall has been a programmer, systems designer, systems administrator, product
manager, technical marketing manager and educator. He has worked for such com-
panies as Western Electric Corporation, Aetna Life and Casualty, Bell Laboratories,
Digital Equipment Corporation, VA Linux Systems and SGI. He is now an independent
consultant in Free and Open Source Software (FOSS) Business and Technical issues.

36 | november 2007 www.l inux journa l .com

BEACHHEAD
COLUMNS

http://www.li.org
http://www.linuxjournal.com

MAXIMIZE PROCESSING PERFORMANCE
AND MAXIMIZE RESPONSIVENESS.

NOR-TECH
PORTABLE
CLUSTER

Nor-Tech has developed a rugged and energy–effi cient
Portable Cluster. The lightweight HPC clusters are available in
shock-mounted 19" rackmount cases that adhere to military
specifi cations and provide optimal environmental protection.

Intel, the Intel logo, Intel. Leap ahead., the Intel. Leap ahead. logo, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed

as the property of others. © 2007 Intel Corporation. All rights reserved. Nor-Tech, the Nor-Tech logo, Nor-Tech HPC Clusters, and Nor-Tech Portable Clusters are trademarks or registered trademarks

of Northern Computer Technologies.

For information, contact Todd Swank
toll-free at 877-808-7438 or todds@nor-tech.com,
or visit www.nor-tech.com.

F
IL

E
 N

A
M

E
:

61
01

5C
_7

13
81

20
2_

IIA
LJ

X
E

O
11

00
07

.in
dd

D
A

T
E

:

06
.1

8.
07

 1
2:

30
 A

M
F

O
R

M
A

T:

In
D

es
ig

n
C

S
2

/ P
D

F
x1

a

• Lightweight and
 designed for mobility
• Ruggedized chassis
 ensures safe transit
• Ultra-energy effi cient

61015C_71381202_IIALJXEO110007.i1 161015C_71381202_IIALJXEO110007.i1 1 6/19/07 12:48:59 PM6/19/07 12:48:59 PM

mailto:todds@nor-tech.com
http://www.nor-tech.com

38 | november 2007 www.l inux journa l .com

I don’t write code, but I do write prose. It’s different,
but there are similarities and overlaps. Code writers have
also supplied me with a useful cache of metaphors. For
example, I can explain my writing method as a debugging
and patching process—and not just because those are
metaphors for editing. Rather, it’s because I regard most of
my writing less as finished work than as useful information
that is always subject to improvement. I’m not just here to
express. I’m here to help. (Okay, sometimes I just joke
around, but that’s different.)

My model is the most useful tome I’ve ever read, The
Elements of Style, by William Strunk Jr. and E. B. White. Better
known just as “Strunk and White”, the book’s 1.0 version
(en.wikisource.org/wiki/The_Elements_of_Style) was
written in 1918 by Strunk alone, when he was a professor
of English at Cornell University. It was privately published
and only 43 pages long. It began:

This book is intended for use in English courses in

which the practice of composition is combined with

the study of literature. It aims to give in brief space

the principal requirements of plain English style. It

aims to lighten the task of instructor and student

by concentrating attention (in Chapters II and III) on

a few essentials, the rules of usage and principles

of composition most commonly violated. The

numbers of the sections may be used as refer-

ences in correcting manuscripts.

The book is a model of brevity and pith. The para-
graph above is first of the five that make up Chapter I,
which fits on a single page. Here is Strunk’s outline for
Chapters II and III:

II. Elementary Rules of Usage

1. Form the possessive singular of nouns with ’s.

2. In a series of three or more terms with a single

conjunction, use a comma after each term except

the last.

3. Enclose parenthetic expressions between commas.

4. Place a comma before and or but introducing an

independent clause.

5. Do not join independent clauses by a comma.

6. Do not break sentences in two.

7. A participial phrase at the beginning of a

sentence must refer to the grammatical subject.

8. Divide words at line-ends, in accordance with

their formation and pronunciation.

III. Elementary Principles of Composition

9. Make the paragraph the unit of composition:

one paragraph to each topic.

10. As a rule, begin each paragraph with a topic

sentence; end it in conformity with the beginning.

11. Use the active voice.

12. Put statements in positive form.

13. Omit needless words.

14. Avoid a succession of loose sentences.

15. Express co-ordinate ideas in similar form.

16. Keep related words together.

17. In summaries, keep to one tense.

18. Place the emphatic words of a sentence at the end.

Just reading that outline makes you a better writer.
Digging deeper has the same effect. Take #13 from
Chapter III: “Omit needless words.” It begins:

Vigorous writing is concise. A sentence should

contain no unnecessary words, a paragraph no

unnecessary sentences, for the same reason that

a drawing should have no unnecessary lines and

a machine no unnecessary parts. This requires not

that the writer make all his sentences short, or

that he avoid all detail and treat his subjects only

in outline, but that every word tell.

The Usefulness
Paradigm
If you don’t like the usefulness paradigm, submit a patch.

LINUX FOR SUITS
COLUMNS

DOC SEARLS

http://www.linuxjournal.com

Familiar? Seems to me the same principle
applies to writing code. One difference is
that writers of prose generally need to be
instructed on the value of brevity while writ-
ers of code do not. That may seem a harsh
or inaccurate statement, but I make it
because code is purposeful in ways prose
does not have to be. In fact, blather is some-
times the very purpose of prose. Garrison
Keillor once called English “the preacher’s
language” because “it allows you to talk
until you think of what to say.”

I suppose you can blather in code too.
Back in the late 1990s, I was sitting in the
office of Phil Hughes, Linux Journal’s founder
and publisher. He had just come from an
argumentative session with a group of geeks
in another room. Imagining I would know
what he was talking about, he threw a pile of
code printout onto his desk. “Look at that!”,
he said. “Six pages of Perl! I could have done
the same thing in one page of awk!”

I’m not saying Perl is blather, by the way
(though Phil might). I am saying that omit-
ting needless words is a code-writing value
for which prose writers require help from the
likes of William Strunk.

Version 1.5 of Strunk and White came
with a 1935 revision by Edward A. Kenny
titled The Elements and Practice of
Composition. Strunk died in 1946. Far as I
know, his book didn’t change until 1957,
when the writer E. B. White, once a stu-
dent of Strunk’s, came again upon “the
little book” and set about improving it
with two short additional chapters and a
return to the original title. This first edi-
tion of what came to be called “Strunk
and White” was version 2.0 of what
began as Strunk’s alone. In the 86-page
1979 edition, White explained:

A second edition of the book was

published in 1972. I have now

completed a third revision. Chapter

IV has been refurbished with

words and expressions of a recent

vintage; four rules of usage have

been added to Chapter I. Fresh

examples have been added to

some of the rules and principles,

amplification has reared its head in

a few places in the text where I

felt an assault could successfully

be made on the bastions of its

brevity, and in general the book has

received a thorough overhaul—to

http://www.faircom.com/go/?usesDLD

correct errors, delete bewhiskered entries, and

enliven the argument.

White died in 1985. The 1999 fourth edition of the
book has a forward by White’s stepson, Roger Angell,
plus an index, a brief afterward by Charles Osgood and
a glossary by Robert DiYanni. The current entry in
Wikipedia notes, “An anonymous editor modified the
text of this 1999 edition. Among other changes, he or
she removed White’s spirited defense of ’he’ for nouns
embracing both genders. See the ’they’ entry in
Chapter IV and also gender-specific pronouns.” In his
forward, Angell puts it more gently, “This edition has
been modestly updated...with a light redistribution of
genders to permit a feminine pronoun or female farmer
to take their places among the males who once inno-
cently served him. Sylvia Plath has knocked Keats out of
the box, and I notice that ’America’ has become ’this
country’ in a sample text, to forestall a subsequent and
possibly demeaning ’she’ in the same paragraph.”

Astute readers of Strunk, White and Linux Journal
will observe that we violate one of the former pair’s
original commands by putting our punctuation outside
our closing quotation marks, unless it is part of the
quotation. This complies with a Linux Journal copy-
editing policy established by Phil Hughes in 1994,
in compliance with what had already become geek
vernacular. One of my first arguments with Phil was
over this very practice. I lost.

Today if you look for The Elements of Style at
Amazon.com, you’ll find three different books: The
1999 fourth edition, Strunk’s original edition and The
Elements of Style Illustrated, which (Wikipedia tells
us) is the fourth edition plus illustrations by Maira
Kalman. Somehow I can’t help regarding the three as
“distributions” of Strunk’s patched kernel, each useful
in its own way.

It’s also interesting to read and compare the discussion
and history pages behind the Wikipedia entry for The
Elements of Style. The former calls to mind the Linux-
Kernel Mailing List (LKML), while the latter serves as a kind
of code repository. These analogies are far from precise,
but there is a common purpose in usefulness.

What brought me to this fresh appreciation of usefulness
was a blog post by Alan Mitchell titled “Beyond the persuasion
paradigm” (rightsideup.blogs.com/my_weblog/2007/08/
beyond-the-pers.html). He writes:

Our modern commercial setup is organised

around a persuasion paradigm, where the

driving force in commerce is companies and

their attempts to persuade individuals—so-called

consumers—to buy their products or services

(and not those of their rivals).

We are, however, groping our way towards a

personal decision-making paradigm, whose

centre of gravity is helping individuals make and

implement better decisions at lower cost (where

“cost” includes time and hassle cost, as well

as money cost). This is being made possible by

an information age: our increasing ability to

search for, gather, store, filter, edit, slice and

dice, analyze, share the information we need

to for our decision-making.

Better personal decision-making (and implemen-

tation) is an era-defining shift for two simple

reasons: it shifts the focus of value creation

from companies and their goals to individuals

and their goals, and it encompasses all aspects

of production, distribution and exchange (and a

whole lot more)....

There is in this a declaration of independence for
individuals, in heed of the need to equip human beings
with better ways to learn, to make choices and to
exercise their autonomy. What’s not clear, and needs
to be, is the role played by programmers in equipping
everybody with the freedom to escape the old persua-
sion paradigm, and a value system in which the depen-
dencies that matter most are ones where buyers rely
entirely on sellers.

Free and open-source code does not only express
the free choices of its authors, but it provides practical
ways to expand the freedoms of those who use and
depend on that code. Before I read Alan’s piece, I
didn’t see the connection between proprietary code
and a larger paradigm anchored in persuasion. The
problem with proprietary code in many cases begins
with motivation. It’s not just about making secret bits
and driving up sale value by making those bits scarce.
It’s about controlling the customer. The persuasion
paradigm puts a premium on captive, dependent
customers. Worse, it restricts the usefulness of prod-
ucts to just what works for the seller. This usually
involves limiting choices for customers.

What Alan calls the personal decision-making
paradigm has been supported from Day Zero in the
Free and Open-Source Development world. What we
have here, I submit, is a usefulness paradigm—one
that has had a quiet and transformative influence on
all it supports. Today, that includes Linux, the Internet
and countless other useful goods, all of which support
far more economic vitality and growth than we ever
enjoyed from the persuasion paradigm. (With due
credit for all it did achieve in its day.)

I share that observation with the intent that it will
prove useful. If it’s not, we’ll patch it, discard it or rewrite
it. If it is, any of us are still free to improve it.�

Doc Searls is Senior Editor of Linux Journal. He is also a Visiting Scholar at the
University of California at Santa Barbara and a Fellow with the Berkman Center
for Internet and Society at Harvard University.

40 | november 2007 www.l inux journa l .com

LINUX FOR SUITS
COLUMNS

http://www.linuxjournal.com

ABERDEENThe Straight Talk People
S I N C E 1 9 9 1

SM

888-297-7409
www.aberdeeninc.com/lj021

HERE IS HOW
THE BEST STACK UP

Intel, Intel Logo, Intel Inside, Intel Inside Logo, Pentium, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. For terms and conditions, please see www.aberdeeninc.com/abpoly/abterms.htm. lj021

4-DRIVE 1U ABERNAS
Up to 4TB Capacity
• Intel® Pentium® 4 Processor
• 1GB DDR Memory
• Available as Linux or Windows NAS
• 300W Power Supply
• From 1TB to 4TB

Starting at
$2,795

12-DRIVE 2U ABERNAS
Up to 12TB Capacity
• Single Dual-Core Intel Xeon Processor
• 2GB DDR2 Memory
• Available as Linux or Windows NAS
• 500W Redundant Power
• From 9TB to 12TB

Starting at
$8,495

24-DRIVE 5U ABERNAS
Up to 24TB Capacity
• Dual Quad-Core Intel Xeon Processors
• 2GB DDR2 Memory
• Windows Storage Server 2003
• 950W Redundant Power
• From 12TB to 24TB

Starting at
$11,795

8-DRIVE 2U ABERNAS
Up to 8TB Capacity
• Single Dual-Core Intel Xeon® Processor
• 2GB DDR2 Memory
• Available as Linux or Windows NAS
• 500W Redundant Power
• From 2TB to 8TB

Starting at
$4,295

16-DRIVE 3U ABERNAS
Up to 16TB Capacity
• Dual Quad-Core Intel Xeon Processors
• 2GB DDR2 Memory
• Windows Storage Server 2003
• 500W Redundant Power
• From 8TB to 16TB

Starting at
$8,795

32-DRIVE 6U ABERNAS
Up to 32TB Capacity
• Dual Quad-Core Intel Xeon Processors
• 2GB DDR2 Memory
• Windows Storage Server 2003
• 1350W Redundant Power
• From 16TB to 32TB

Starting at
$14,795

“Aberdeen surpasses HP … markedly higher scores …
AberNAS 128 boasts outstanding features”

Network Computing—Aberdeen AberNAS 128

Features & Benefits:
• Up to 32TB of Storage Capacity
• Available in three Operating Systems

• GUI-Based Linux featuring iSCSI
• Windows Storage Server 2003 R2
• Windows Unified Data Storage

Server w/iSCSI
• Optimized SMB and NFS Performance
• Internal Windows OS Drive
• Linux OS on DOM
• Recovery from DVD or USB
• RAID 6 w/automatic rebuild
• Multi-platform File Sharing —

Windows, Linux, Unix, FTP, Macintosh

lj021:lj018.qxd 9/12/2007 5:40 PM Page 1

http://www.aberdeeninc.com/lj021
http://www.aberdeeninc.com/abpoly/abterms.htm

42 | november 2007 www.l inux journa l .com

NEW PRODUCTS

ASUS Eee PC 700/701
Fear not, gadget geeks, for in future issues we’ll fully cover the new ASUS Eee PC—so
much so that you’ll grumble “enough already!” The Eee PC is a new, ultraportable Linux-
based laptop starting at (this is not a typo) $259 US. ASUS is marketing the 700 model
(2GB Flash storage, 256MB of RAM) to first-time/elderly computer users, low-income house-
holds and K–12 education, while the 701 model (4GB Flash storage, 512MB of RAM) is
mainly for PC owners seeking convenient mobility. Both models feature preloaded
Xandros Linux, Intel Celeron-M 900MHz processor, 7" display, 10/100Mbps LAN,
802.11 b/g wireless, three USB 2.0 ports, MMC/SD card reader, VGA out,
Windows XP compatibility/drivers, built-in camera (optional on the 700)
and a four-cell battery. There are no optical drives; both models weigh
in at 0.9kg/2lbs. At the time of this writing, ASUS projects that
dealers should have the Eee PC by late September 2007.

www.asuseeepc.com

Lenovo’s ThinkPad
T Series Linux Notebooks
A year ago we saw Lenovo tepidly dip its pinky-toe into the Linux waters by certifying and supporting its
ThinkPad T60p notebook with user-installed SUSE Linux Enterprise Desktop (SLED). This year finds Lenovo
frolicking in the balmy Linux Sea, offering SLED preloaded and supported on its business-oriented
ThinkPad T Series. Lenovo says that strong demand for Linux notebooks from customers made the
preload option inevitable. Preloaded ThinkPads will be available to the general public in Q4 2007.

www.lenovo.com/linux

Storix, Inc.’s SBAdmin
Storix, Inc., recently released SBAdmin v6.2, touted as the first backup and system recov-
ery solution to integrate with IBM’s Tivoli Storage Manager (TSM). SBAdmin complements
TSM’s features and capabilities for Linux and AIX systems. SBAdmin also writes directly to
the TSM server, which cuts extraneous steps, saves time and increases reliability. In
addition, the application provides TSM users with disaster-recovery capabili-
ties, including a feature called Adaptable System Recovery, which enables
a system restore to the same or dissimilar hardware.

www.storix.com

Motorola’s MOTOMAGX
Mobile Linux Platform
In the near future, Motorola expects 60% of its handsets to run on Linux, and the new MOTOMAGX platform
is a means for realizing that goal. Motorola calls MOTOMAGX its “next-generation mobile Linux platform” that
will “deliver new levels of openness, flexibility and support for third-party applications” on its devices. The
company also hopes to empower its developer community to innovate in exciting ways. Currently, MOTOMAGX
supports apps developed in Java ME and will soon support WebUI and native Linux application environments.

www.motorola.com

�

�
�

http://www.asuseeepc.com
http://www.lenovo.com/linux
http://www.storix.com
http://www.motorola.com
http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 43

NEW PRODUCTS

Olive’s OPUS 307S
Who knows where you’ll find Linux next? One
sure spot is the embedded brain inside Olive
Media Products’ new OPUS 307S audio system.
The OPUS 307S, part of Olive’s OPUS N°3
product line, is a stylish audio component that
goes in your stereo rack and contains all of your
digital music on its 250GB hard drive. The OPUS
can store up to 700 CDs in lossless quality.
Improvements on the OPUS 307S over previous
Olive devices include perpendicular recording
technology for lower power consumption, higher
storage density, improved long-term reliability
and inaudible operation. In addition, Olive will
preload up to 300 of your CDs for free.

www.olive.us Lantronix’s
SecureLinx Branch
Office Manager
Move over Swiss Army knife, Lantronix has
released its new SecureLinx Branch (SLB)
Office Manager product, an IT management
appliance that integrates a console server, power
management and an Ethernet switch into a
1U rack-mountable device. With SLB, system
administrators can securely manage a diverse
range of servers and IT infrastructure equipment
in branch/remote offices from anywhere via the
Internet. SLB allows enterprises to avoid the cost
of dedicated technicians and other expensive
overhead at each satellite location.

www.lantronix.com

Sendio’s I.C.E Box E-Mail
Integrity Service Appliance
We’ve been tracking the buzz surrounding Sendio’s I.C.E Box, an
e-mail security appliance that reputedly blocks 100% of spam with
no false positives. Although the I.C.E. Box has been shipping for
several months, its Linux credentials recently came to our attention.
Shunning the antispam filter approach, the I.C.E. Box performs a
one-time verification that the sender of the message is someone
with whom you indeed wish to communicate. The result is an end
to the junk while maintaining legitimate communications. The
appliance integrates seamlessly with any e-mail server and LDAP
environment. A built-in Kaspersky antivirus engine also is included.

www.sendio.com

Black Duck
Software’s protexIP
Software development with open-source code is great, but it
can be complicated. This is why Black Duck Software created
protexIP/development (now v4.4), “a platform that helps compa-
nies govern how their software assets are created, managed
and licensed.” protexIP helps developers and legal counsel in
managing the use of code from open-source projects who have
explicitly decided to switch to GPLv3 and those that have not. Also
included is an enhanced KnowledgeBase, a library of open-source
and vendor-added code software components with detailed
licensing information for more than 140,000 components.

www.blackducksoftware.com

�

�

�

�

http://www.olive.us
http://www.lantronix.com
http://www.sendio.com
http://www.linuxjournal.com
http://www.blackducksoftware.com

44 | november 2007 www.l inux journa l .com

NEW PRODUCTS

Trinity’s Digital
Audio Workstation
Here is an audio device that is not brand-new but new to me and
hopefully to you too—Trinity Audio Group’s Trinity Digital Audio
Workstation. This slick, all-in-one device is a portable, professional
recording studio that allows one to do anything imaginable with linear
audio (for example, sample, edit, mix, play back and so on). Trinity
does everything your laptop with an audio interface can do, only more
conveniently and portably. Trinity runs on Linux and works with WAV,
MP3 and Ogg Vorbis files. Several core audio apps are included,
such as Audacity, Hydrogen drum machine, Ardour and more. Built-in
802.11g Wi-Fi lets you podcast from the field.

www.trinityaudiogroup.com

IBM’s Big Green
Linux Initiative
Thankfully, firms like IBM are starting to look at our serious environ-
mental problems as challenges rather than barriers. IBM’s new Big
Green Linux initiative seeks to leverage Linux and other technologies to
reduce costs and energy consumption by building cooler data centers
for itself and its customers. Big Green Linux is a subset of IBM’s
broader, yet similar, Project Big Green. Specifics of Big Green Linux
include server consolidation to System x and System p platforms; new
efficient products, such as the Information Server Blade; contributions
to the Linux kernel (such as tickless low-power state) and others.

www.ibm.com/linux

SugarCRM
By the time you flip to this page, SugarCRM will have its sweet new version 5.0
ready for you. This is the ninth major release of the popular commercial open-source
customer relationship management package. New features, such as the ability to
build custom modules, a new Ajax e-mail client and a Multi-Instance On-Demand
architecture, are said to “enhance the ability to build, customize, scale and upgrade
the application”. SugarCRM says its innovations are derived from feedback from
2,000 commercial customers and thousands of Open Source community members.

www.sugarcrm.com

Trusted Computer Solutions’ Security Blanket
Trusted Computer Solutions has long made security solutions for the CIA and other spy agencies in Washington, DC, and now its new
product, Security Blanket, aims to harden your Linux system with the same fervor. Trusted Computer Solutions calls Security Blanket
“a system lock-down and security management tool that enables systems administrators to configure and enhance the security level of
the Red Hat Enterprise Linux operating platform automatically”. The product’s advantage is to simplify the current arduous methods
(such as using Bastille) for “hardening” systems. Its menu-driven UI allows one to run either customized profiles or predefined ones
that automate industry-standard best practices from the National Institute of Standards and the Center for Internet Security. Security
Blanket supports Red Hat Enterprise Linux 4 and 5.

www.trustedcs.com

Please send information about releases of Linux-related products to James Gray at newproducts@linuxjournal.com or New Products
c/o Linux Journal, 1752 NW Market Street, #200, Seattle, WA 98107. Submissions are edited for length and content.

�

�
�

http://www.trinityaudiogroup.com
http://www.linuxjournal.com
http://www.ibm.com/linux
http://www.sugarcrm.com
http://www.trustedcs.com
mailto:newproducts@linuxjournal.com

http://www.mikrotik.com

46 | november 2007 www.l inux journa l .com

When mission-critical applications fail, so does your business. This
often is a true statement in today’s environments, where most organi-
zations spend millions of dollars making their services available 24/7,
365 days a year. Organizations, regardless of whether they are serving
external customers or internal customers, are deploying highly avail-
able solutions to make their applications highly available.

In view of this growing demand, almost every IT vendor currently
is providing high-availability solutions for its specific platform. Famous
commercial high-availability solutions include IBM’s HACMP, Veritas’
Cluster Server and HP’s Serviceguard.

If you’re looking for a commercial high-availability solution on
Red Hat Enterprise Linux, the best choice probably is the Red Hat
Cluster Suite.

In early 2002, Red Hat introduced the first member of its Red Hat
Enterprise Linux family of products, Red Hat Enterprise Linux AS (origi-
nally called Red Hat Linux Advanced Server). Since then, the family of
products has grown steadily, and it now includes Red Hat Enterprise

Linux ES (for entry- and mid-range servers) and Red Hat Enterprise
Linux WS (for desktops/workstations). These products are designed
specifically for use in enterprise environments to deliver superior appli-
cation support, performance, availability and scalability.

The original release of Red Hat Enterprise Linux AS version 2.1
included a high-availability clustering feature as part of the base prod-
uct. This feature was not included in the smaller Red Hat Enterprise
Linux ES product. However, with the success of the Red Hat Enterprise
Linux family, it became clear that high-availability clustering was a
feature that should be made available for both AS and ES server prod-
ucts. Consequently, with the release of Red Hat Enterprise Linux
version 3 in October 2003, the high-availability clustering feature was
packaged into an optional layered product called the Red Hat Cluster
Suite, and it was certified for use on both the Enterprise Linux AS and
Enterprise Linux ES products.

The RHEL cluster suite is a separately licensed product and can be
purchased from Red Hat on top of Red Hat’s base ES Linux license.

RedHat
Enterprise Linux
Cluster Suite

Building a highly available solution using the RHEL cluster suite. KHURRAM SHIRAZ

http://www.linuxjournal.com

Red Hat Cluster Suite Overview
The Red Hat Cluster Suite has two major features. One is the
Cluster Manager that provides high availability, and the other
feature is called IP load balancing (originally called Piranha).
The Cluster Manager and IP load balancing are complementary
high-availability technologies that can be used separately or in
combination, depending on application requirements. Both of
these technologies are integrated in Red Hat’s Cluster Suite. In
this article, I focus on the Cluster Manager. Table 1 shows the
major components of the RHEL Cluster Manager.

Shared Storage and Data Integrity
Lock management is a common cluster infrastructure service that
provides a mechanism for other cluster infrastructure components to
synchronize their access to shared resources. In a Red Hat cluster,
DLM (Distributed Lock Manager) or, alternatively, GULM (Grand
Unified Lock Manager) are possible lock manager choices. GULM is a
server-based unified cluster/lock manager for GFS, GNBD and CLVM.
It can be used in place of CMAN and DLM. A single GULM server can

be run in standalone mode but introduces a single point of failure for
GFS. Three or five GULM servers also can be run together, in which
case the failure of one or two servers can be tolerated, respectively.
GULM servers usually are run on dedicated machines, although this is
not a strict requirement.

In my cluster implementation, I used DLM, and it runs in each
cluster node. DLM is good choice for small clusters (up to two
nodes), because it removes quorum requirements as imposed by
the GULM mechanism).

Based on DLM or GLM locking functionality, there are two basic
techniques that can be used by the RHEL
cluster for ensuring data integrity in concurrent
access environments. The traditional way is
the use of CLVM, which works well in most
RHEL cluster implementations with LVM-based
logical volumes.

Another technique is GFS. GFS is a cluster
filesystem that allows a cluster of nodes to
access simultaneously a block device that is
shared among the nodes. It employs distributed
metadata and multiple journals for optimal
operation in a cluster. To maintain filesystem
integrity, GFS uses a lock manager (DLM or
GULM) to coordinate I/O. When one node
changes data on a GFS filesystem, that change
is visible immediately to the other cluster nodes
using that filesystem.

Hence, when you are implementing a RHEL
cluster with concurrent data access require-
ments (such as, in the case of an Oracle RAC
implementation), you can use either GFS or
CLVM. In most Red Hat cluster implementa-
tions, GFS is used with a direct access configu-
ration to shared SAN from all cluster nodes.
However, for the same purpose, you also can
deploy GFS in a cluster that is connected to a
LAN with servers that use GNBD (Global
Network Block Device) or two iSCSI (Internet
Small Computer System Interface) devices.

Both GFS and CLVM use locks from the
lock manager. However, GFS uses locks from
the lock manager to synchronize access to
filesystem metadata (on shared storage), while
CLVM uses locks from the lock manager to
synchronize updates to LVM volumes and
volume groups (also on shared storage).

For nonconcurrent RHEL cluster implemen-
tations, you can rely on CLVM, or you can use
native RHEL journaling-based techniques (such
as ext2 and ext3). For nonconcurrent access
clusters, data integrity issues are minimal; I tried
to keep my cluster implementations simple by

using native RHEL OS techniques.

Fencing Infrastructure
Fencing also is an important component of every RHEL-based cluster
implementation. The main purpose of the fencing implementation is
to ensure data integrity in a clustered environment.

In fact, to ensure data integrity, only one node can run a
cluster service and access cluster service data at a time. The use

www. l inux journa l .com november 2007 | 47

x
e

Table 1. RHEL Cluster Manager Components

SOFTWARE SUBSYSTEM COMPONENT PURPOSE

Fence fenced Provides fencing infrastructure for specific

hardware platforms.

DLM libdlm, Contains distributed lock management

dlm-kernel (DLM) library.

CMAN cman Contains the Cluster Manager (CMAN),

which is used for managing cluster

membership, messaging and notification.

GFS and related locks Lock_NoLock Contains shared filesystem support that can

be mounted on multiple nodes concurrently.

GULM gulm Contains the GULM lock management

user-space tools and libraries (an alternative

to using CMAN and DLM).

Rgmanager clurgmgrd, clustat Manages cluster services and resources.

CCS ccsd, ccs_test Contains the cluster configuration services

and ccs_tool dæmon (ccsd) and associated files.

Cluster Configuration System-config-cluster Contains the Cluster Configuration Tool,

Tool used to configure the cluster and display

the current status of the nodes, resources,

fencing agents and cluster services graphically.

Magma magma and Contains an interface library for cluster lock

magma-plugins management and required plugins.

IDDEV iddev Contains the libraries used to identify the

filesystem (or volume manager) in which a

device is formatted.

http://www.linuxjournal.com

of power switches in the cluster hardware configuration enables a
node to power-cycle another node before restarting that node’s
cluster services during the failover process. This prevents any two
systems from simultaneously accessing the same data and corrupting
it. It is strongly recommended that fence devices (hardware or soft-
ware solutions that remotely power, shut down and reboot cluster
nodes) are used to guarantee data integrity under all failure condi-
tions. Software-based watchdog timers are an alternative used to
ensure correct operation of cluster service failover; however, in most
RHEL cluster implementations, hardware fence devices are used, such
as HP ILO, APC power switches, IBM BladeCenter devices and the
Bull NovaScale Platform Administration Processor (PAP) Interface.

Note that for RHEL cluster solutions with shared storage, an imple-
mentation of the fence infrastructure is a mandatory requirement.

Step-by-Step Implementation
of a RHEL Cluster
Implementation of RHEL clusters starts with the selection of proper
hardware and connectivity. In most implementations (without IP load
balancing), shared storage is used with two, or more than two, servers
running the RHEL operating system and RHEL cluster suite.

A properly designed cluster, whether you are building a RHEL-
based cluster or an IBM HACMP-based cluster, should not contain any
single point of failure. Keeping this in mind, you have to remove any
single point of failure from your cluster design. For this purpose, you
can place your servers physically in two separate racks with redundant
power supplies. You also have to remove any single point of failure
from the network infrastructure used for the cluster. Ideally, you
should have at least two network adapters on each cluster node,
and two network switches should be used for building the network
infrastructure for the cluster implementation.

Software Installation
Building a RHEL cluster starts with the installation of RHEL on two
cluster nodes. My setup has two HP Proliant servers (DL740) with
shared fiber storage (HP MSA1000 storage). I started with a RHEL v4
installation on both nodes. It’s best to install the latest available oper-
ating system version and its updates. I selected v4 update 4 (which
was the latest version of RHEL when I was building that cluster). If you
have a valid software subscription from Red Hat, you can log in to the
Red Hat network, and go to software channels to download the latest
update available. Later, once you download the ISO images, you can
burn it to CDs using any appropriate software. During the RHEL OS
installation, you will go through various configuration selections, the
most important of which are the date and time-zone configuration,
the root user password setting, firewall settings and OS security level
selection. Another important configuration option is network settings.
Configuration of these settings can be left for a later stage, especially
in building a high-availability solution with Ether-channel (or Ethernet
bonding configuration).

You may need to install additional drivers after you install
the OS. In my case, I downloaded the RHEL support package for
the DL740 servers (the HP Proliant support pack, which is available
from h18004.www1.hp.com/products/servers/linux/
dl740-drivers-cert.html).

The next step is installing the cluster software package itself. This
package, again, is available from the RHEL network, and you definitely
have to select the latest available cluster package. I selected
rhel-cluster-2.4.0.1 for my setup, which was the latest cluster
suite available at the time.

Once downloaded, the package will be in tar format. Extract it,
and then install at least the following RPMs, so that the RHEL cluster
with DLM can be installed and configured:

�� Magma and magma-plugins

�� Perl-net-telnet

�� Rgmanager

�� System-config-cluster

�� DLM and dlm-kernel

�� DLM-kernel-hugemem and SMP support for DLM

�� Iddev and ipvsadm

�� Cman, cman-smp, cman-hugemem and cman-kernelheaders

�� Ccs

Restart both RHEL cluster nodes after installing vendor-related
hardware support drivers and the RHEL cluster suite.

Network Configuration
For network configuration, the best way to proceed is to use the
network configuration GUI. However, if you plan to use Ethernet
channel bonding, the configuration steps are slightly different.

Ethernet channel bonding allows for a fault-tolerant network
connection by combining two Ethernet devices into one virtual device.
The resulting channel-bonded interface ensures that if one Ethernet
device fails, the other device will become active. Ideally, connections
from these Ethernet devices should go to separate Ethernet switches
or hubs, so that the single point of failure is eliminated, even on the
Ethernet switch and hub level.

To configure two network devices for channel bonding, perform
the following on node 1:

1) Create bonding devices in /etc/modules.conf. For example,
I used the following commands on each cluster node:

alias bond0 bonding

options bonding miimon=100 mode=1

Doing this loads the bonding device with the bond0 interface name
and passes options to the bonding driver to configure it as an active-
backup master device for the enslaved network interfaces.

2) Edit the /etc/sysconfig/network-scripts/ifcfg-eth0 configuration
file for eth0 and the /etc/sysconfig/network-scripts/ifcfg-eth1 file
for the eth1 interface, so that these files show identical contents,
as shown below:

DEVICE=ethx

USERCTL= no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

This enslaves ethX (replace X with the assigned number of the

48 | november 2007 www.l inux journa l .com

FEATURE Red Hat Enterprise Linux Cluster Suite

http://www.linuxjournal.com

Ethernet devices) to the bond0 master device.
3) Create a network script for the bonding device (for example,

/etc/sysconfig/network-scripts/ifcfg-bond0), which would appear like
the following example:

DEVICE=bond0

USERCTL=no

ONBOOT=yes

BROADCAST=172.16.2.255

NETWORK=172.16.2.0

NETMASK=255.255.255.0

GATEWAY=172.16.2.1

IPADDR=172.16.2.182

4) Reboot the system for the changes to take effect.
5) Similarly, on node 2, repeat the same steps with the only differ-

ence being that the file /etc/sysconfig/network-scripts/ifcfg-bond0
should contain an IPADDR entry with the value of 172.16.2.183.

As a result of these configuration steps, you will end up with
two RHEL cluster nodes with IP addresses of 172.16.2.182 and
172.16.2.183, which have been assigned to virtual Ethernet
channels (the underlying two physical Ethernet adapters for each
Ethernet channel).

Now, you easily can use the network configuration GUI on the
cluster nodes to set other network configuration details, such as
hostname and primary/secondary DNS server configuration. I set
Commsvr1 and Commsvr2 as the hostnames for the cluster nodes and
also ensured that names resolution in both long names and short names
would work fine from both the DNS server and the /etc/hosts file.

A RHEL cluster, by default, uses /etc/hosts for node name
resolution. The cluster node name needs to match the output of
uname -n or the value of HOSTNAME in /etc/sysconfig/network.

If you have an additional Ethernet interface in each cluster node, it

is always a good idea to configure a separate IP network as an addi-
tional network for heartbeats between cluster nodes. It is important
that the RHEL cluster uses, by default, eth0 on the cluster nodes
for heartbeats. However, it is still possible to use other interfaces
for additional heartbeat exchanges.

For this type of configuration, you simply can use the network
configuration GUI to assign IP addresses—for example, 192.168.10.1
and 192.168.10.2 on eth2, and get it resolved from the /etc/hosts file.

Setup of the Fencing Device
As I was using HP hardware, I relied on the configuration of the HP
ILO devices as a fencing device for my cluster. However, you may
consider configuring other fencing devices, depending on the
hardware type used for your cluster configuration.

To configure HP ILO, you have to reboot your servers and press the F8
key to enter into the ILO configuration menus. Basic configuration is rela-
tively simple; you have to assign IP addresses to ILO devices with the name
of the ILO device. I assigned 172.16.1.100 with Commilo1 as the name of
ILO device on node1, and 172.16.1.101 with Commilo2 as the ILO device
name on node2. Be sure, however, to connect Ethernet cables to the ILO
adapters, which usually are marked clearly on the back side of HP servers.

Once rebooted, you can use the browsers on your Linux servers
to access ILO devices. The default user name is Administrator, with
a password that usually is available on the hard-copy tag associated
with the HP servers. Later, you can change the Administrator
password to a password of your choice, using the same Web-based
ILO administration interface.

Setup of the Shared Storage Drive
and Quorum Partitions
In my cluster setup environment, I used an HP fiber-based shared
storage MSA1000. I configured a RAID-1 of 73.5GB using the HP
smart array utility, and then assigned it to both of my cluster nodes
using the selective host presentation feature.

After rebooting both nodes, I used HP fiber utilities, such
as hp_scan, so that both servers should be able to see this
array physically.

To verify the physical availability of shared storage for both cluster
nodes, look in the /dev/proc/proc file for an entry like /dev/sda or
/dev/sdb, depending upon your environment.

Once you find your shared storage on the OS level, partition it
according to your cluster storage requirements. I used the parted tool
on one of my cluster nodes to partition the shared storage. I created
two small primary partitions to hold raw devices, and a third primary
partition was created to hold the shared data filesystem:

Parted> select /dev/sda

Parted > mklabel /dev/sda msdos

Parted > mkpart primary ext3 0 20

Parted > mkpart primary ext3 20 40

Parted > mkpart primary ext3 40 40000

I rebooted both cluster nodes and created the /etc/sysconfig/rawdevices
file with the following contents:

/dev/raw/raw1 /dev/sda1

/dev/raw/raw2 /dev/sda2

A restart of rawdevices services on both nodes will configure raw
devices as quorum partitions:

/home/root> services rawdevices restart

I then created a JFS2 filesystem on the third primary partition using
the mke2jfs command; however, its related entry should not be put in

www. l inux journa l .com november 2007 | 49

Listing 1. Contents of the /etc/hosts File on Each Server

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 localhost.localdomain localhost

172.16.2.182 Commsvr1 Commsvr1.kmefic.com.kw

172.16.2.183 Commsvr2

172.16.1.186 Commilo1 Commilo1.kmefic.com.kw

172.16.1.187 Commilo2 Commilo2.kmefic.com.kw

172.16.2.188 Commserver

192.168.10.1 node1

192.168.10.2 node2

172.16.2.4 KMETSM

http://www.linuxjournal.com

the /etc/fstab file on either cluster node, as this shared filesystem will
be under the control of the Rgmanager of the cluster suite:

/home/root> mke2jfs -j -b 4096 /dev/sda3

Now, you can create a directory structure called /shared/data on
both nodes and verify the accessibility of the shared filesystem from
both cluster nodes by mounting that filesystem one by one at each
cluster node (mount /dev/sda3 /shared/data). However, never try
to mount this filesystem on both cluster nodes simultaneously, as it
might corrupt the filesystem itself.

Cluster Configuration
Almost everything required for cluster infrastructure has been done, so
the next step is configuring the cluster itself.

A RHEL cluster can be configured in many ways. However, the
easiest way to configure a RHEL cluster is to use the RHEL GUI and
go to System Management→Cluster Management→Create a cluster.

I created a cluster with the cluster name of Commcluster, and with
node names of Commsvr1 and Commsvr2. I added fencing to both
nodes—fencing devices Commilo1 and Commilo2, respectively—so
that each node would have one fence level with one fence device. If
you have multiple fence devices in your environment, you can add
another fence level with more fence devices to each node.

I also added a shared IP address of 172.16.2.188, which will be
used as the service IP address for this cluster. This is the IP address that
also should be used as the service IP address for applications or
databases (like for listener configuration, if you are going to use an
Oracle database in the cluster).

I added a failover domain, namely Kmeficfailover, with priorities
given in the following sequence:

Commsvr1

Commsvr2

I added a service called CommSvc and then put that service in the
above-defined failover domain. The next step is adding resources to
this service. I added a private resource of the filesystem type, which
has the characteristic of device=/dev/sd3, mountpoint of /shared/data
and mount type of ext3.

I also added a private resource of the script type (/root/CommS.sh)
to service CommSvc. This script will start my C-based application, and
therefore, it has to be present in the /root directory on both cluster
nodes. It is very important to have correct ownership of root and
security; otherwise, you can expect unpredictable behavior during
cluster startup and shutdown.

Application or database startup and shutdown scripts are very
important for a RHEL-based cluster to function properly. RHEL clusters

use the same scripts for providing application/database monitoring and
high availability, so every application script used in a RHEL cluster
should have a specific format.

All such scripts should at least have start and stop subsections, along
with a status subsection. When an application or database is available
and running, the status subsection of the script should return a value of
0, and when an application is not running or available, it should return a
value of 1. The script also should contain a restart subsection, which
tries to restart services if the application is found to be dead.

A RHEL cluster always tries to restart the application on the same
node that was the previous owner of the application, before trying to
move that application to the other cluster node. A sample application
script, which was used in my RHEL cluster implementation (to provide

50 | november 2007 www.l inux journa l .com

It is strongly recommended
that fence devices (hardware
or software solutions that
remotely power, shut down
and reboot cluster nodes) are
used to guarantee data integrity
under all failure conditions.

Listing 2. Sample Application Script

#Script Name: CommS.sh

#Script Purpose: To provide application

#start/stop/status under Cluster

#Script Author: Khurram Shiraz

#!/bin/sh

basedir=/home/kmefic/KMEFIC/CommunicationServer

case $1 in

'start')

cd $basedir

su kmefic -c "./CommunicationServer -f Dev-CommunicationServer.conf"

exit 0

;;

'stop')

z=`ps -ef | grep Dev-CommunicationServer | grep -v "grep"|

�awk ' { print $2 } '

`

if [[$? -eq 0]]

then

kill -9 $z

fuser -mk /home/kmefic

exit 0

fi

;;

'restart')

/root/CommunicationS.sh stop

sleep 2

echo Now starting......

/root/CommunicationS.sh start

echo "restarted"

;;

'status')

ps -U kmefic | grep CommunicationSe 1>/dev/null

if [[$? = 0]]

then

exit 0

else

exit 1

fi

;;

esac

FEATURE Red Hat Enterprise Linux Cluster Suite

http://www.linuxjournal.com

high availability to a legacy C-based application) is shown in Listing 2.
Finally, you have to add a shared IP address (172.16.2.188) to the

service present in your failover domain, so that the service should contain
three resources: two private resources (one filesystem and one script) and
one shared resource, which is the service IP address for the cluster.

The last step is synchronizing the cluster configuration across the
cluster nodes. The RHEL cluster administration and configuration tool
provides a “save configuration to cluster” option, which will appear
once you start the cluster services. Hence, for the first synchronization,
it is better to send the cluster configuration file manually to all cluster
nodes. You easily can use the scp command to synchronize the
/etc/cluster/cluster.conf file across the cluster nodes:

/home/root> scp /etc/cluster/cluster.conf Commsvr2:/etc/cluster/cluster.conf

Once synchronized, you can start cluster services on both cluster nodes.
You should start and stop RHEL-related cluster services, in sequence.

To start:

service ccsd start

service cman start

service fenced start

service rgmanager start

To stop:

service rgmanager stop

service fenced stop

service cman stop

service ccsd stop

If you use GFS, startup/shutdown of the gfs and clvmd services
have to be included in this sequence.

Additional Considerations
In my environment, I decided not to start cluster services at RHEL boot
time and not to shut down these services automatically when shutting
down the RHEL box. However, if your business requires 24/7 service
availability, you can do this easily by using the chkconfig command.

Another consideration is logging cluster messages in a different
log file. By default, all cluster messages go into the RHEL log messages
file (/var/log/messages), which makes cluster troubleshooting somewhat
difficult in some scenarios. For this purpose, I edited the /etc/syslog.conf
file to enable the cluster to log events to a file that is different from the
default log file and added the following line:

daemon.* /var/log/cluster

To apply this change, I restarted syslogd with the service syslog restart
command. Another important step is to specify the time period for rotating
cluster log files. This can be done by specifying the name of the cluster
log file in the /etc/logrotate.conf file (the default is a weekly rotation):

/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler

/var/log/boot.log /var/log/cron /var/log/cluster {

sharedscripts postrotate

/bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2>

/dev/null || true

endscript

}

You also have to pay special attention to keeping UIDs and GIDs
synchronized across cluster nodes. This is important in making sure
proper permissions are maintained, especially with reference to the
shared data filesystem.

GRUB also needs to conform to the suite environment’s
specific needs. For instance, many system administrators, in a
RHEL cluster environment, reduce the GRUB selection timeout
to some lower values, such as two seconds, to accelerate system
restart time.

Database Integration with a RHEL Cluster
The same RHEL cluster infrastructure can be used for providing
high availability to databases, such as Oracle, MySQL and IBM DB2.

The most important thing to remember is to base your
database-related services on a shared IP address—for example,
you have to configure Oracle listener based on the shared service
IP address.

Next, I explain, in simple steps, how to use an already-configured
RHEL cluster to provide high availability to a MySQL database server,
which is, no doubt, one of the most commonly used databases on RHEL.

I assume that the MySQL-related RPMs are installed on both
cluster nodes and that the RHEL cluster already is configured with
a service IP address of 172.16.2.188.

Now, you simply need to define a failover domain using the cluster
configuration tool (with the cluster node of your choice having a higher pri-
ority). This failover domain will have the MySQL service, which, in turn, will
have two private resources and one shared resource (the service IP address).

One of the private resources should be of the filesystem type (in my
configuration, it has a mountpoint of /shared/mysqld), and the other
private resource should be of the script type, pointing toward the
/etc/init.d/mysql.server script. The contents of this script, which should
be available on both cluster nodes, is shown in Listing 3 on the LJ FTP
site at ftp.linuxjournal.com/pub/lj/listings/issue163/9759.tgz.

This script sets the data directory to /shared/mysqld/data, which is
available on our shared RAID array and should be available from both
cluster nodes.

Testing for high availability of the MySQL database can be
done easily with the help of any MySQL client. I used SQLyog,
which is a Windows-based MySQL client. I connected to the
MySQL database on Commsvr1 and then crashed this cluster node
using the halt command. As a result of this system crash, the
RHEL cluster events were triggered, and the MySQL database
automatically restarted on Commsvr2. This whole failover process
took one to two minutes and happened quite seamlessly.

Summary
RHEL clustering technology provides a reliable high-available
infrastructure that can be used for meeting 24/7 business require-
ments for databases as well as legacy applications. The most
important thing to remember is that it is best to plan carefully
before the actual implementation and test your cluster and all
possible failover scenarios thoroughly before going live with a
RHEL cluster. A well-documented cluster test plan also can be
helpful in this regard.�

Khurram Shiraz is senior system administrator at KMEFIC, Kuwait. In his eight years of IT experience,
he has worked mainly with IBM technologies and products, especially AIX, HACMP Clustering, Tivoli
and IBM SAN/NAS storage. He also has worked with the IBM Integrated Technology Services group. His
areas of expertise include design and implementation of high-availability and DR solutions based on
pSeries, Linux and Windows infrastructures. He can be reached at aix_tiger@yahoo.com.

www.l inux journa l .com november 2007 | 51

mailto:tiger@yahoo.com
http://www.linuxjournal.com

52 | november 2007 www.l inux journa l .com

Getting Started
with Heartbeat

Your first step toward
high-availability bliss.

Daniel Bartholomew

In every work environment with which I have been

involved, certain servers absolutely always must be up

and running for the business to keep functioning

smoothly. These servers provide services that always

need to be available—whether it be a database, DHCP,

DNS, file, Web, firewall or mail server.

A cornerstone of any service that always needs be

up with no downtime is being able to transfer the

service from one system to another gracefully. The

magic that makes this happen on Linux is a service

called Heartbeat. Heartbeat is the main product of

the High-Availability Linux Project.

Heartbeat is very flexible and powerful. In this

article, I touch on only basic active/passive clusters

with two members, where the active server is providing

the services and the passive server is waiting to take

over if necessary.

IMAGE ©ISTOCKPHOTO.COM/KATIV

http://www.linuxjournal.com

Installing Heartbeat
Debian, Fedora, Gentoo, Mandriva, Red Flag, SUSE, Ubuntu and
others have prebuilt packages in their repositories. Check your
distribution’s main and supplemental repositories for a package
named heartbeat-2.

After installing a prebuilt package, you may see a “Heartbeat
failure” message. This is normal. After the Heartbeat package is
installed, the package manager is trying to start up the Heartbeat
service. However, the service does not have a valid configuration
yet, so the service fails to start and prints the error message.

You can install Heartbeat manually too. To get the most recent
stable version, compiling from source may be necessary. There are
a few dependencies, so to prepare on my Ubuntu systems, I first
run the following command:

sudo apt-get build-dep heartbeat-2

Check the Linux-HA Web site for the complete list of depen-
dencies. With the dependencies out of the way, download the
latest source tarball and untar it. Use the ConfigureMe script to
compile and install Heartbeat. This script makes educated guesses
from looking at your environment as to how best to configure
and install Heartbeat. It also does everything with one command,
like so:

sudo ./ConfigureMe install

With any luck, you’ll walk away for a few minutes, and when
you return, Heartbeat will be compiled and installed on every node
in your cluster.

Configuring Heartbeat
Heartbeat has three main configuration files:

�� /etc/ha.d/authkeys

�� /etc/ha.d/ha.cf

�� /etc/ha.d/haresources

The authkeys file must be owned by root and be chmod 600.
The actual format of the authkeys file is very simple; it’s only two
lines. There is an auth directive with an associated method ID
number, and there is a line that has the authentication method
and the key that go with the ID number of the auth directive.
There are three supported authentication methods: crc, md5
and sha1. Listing 1 shows an example. You can have more than
one authentication method ID, but this is useful only when you
are changing authentication methods or keys. Make the key
long—it will improve security and you don’t have to type in the
key ever again.

The ha.cf File
The next file to configure is the ha.cf file—the main Heartbeat config-
uration file. The contents of this file should be the same on all nodes
with a couple of exceptions.

Heartbeat ships with a detailed example file in the documenta-
tion directory that is well worth a look. Also, when creating your
ha.cf file, the order in which things appear matters. Don’t move
them around! Two different example ha.cf files are shown in
Listings 2 and 3.

The first thing you need to specify is the keepalive—the time
between heartbeats in seconds. I generally like to have this set to
one or two, but servers under heavy loads might not be able to
send heartbeats in a timely manner. So, if you’re seeing a lot of
warnings about late heartbeats, try increasing the keepalive.

The deadtime is next. This is the time to wait without hearing
from a cluster member before the surviving members of the array
declare the problem host as being dead.

Next comes the warntime. This setting determines how long to
wait before issuing a “late heartbeat” warning.

Sometimes, when all members of a cluster are booted at the
same time, there is a significant length of time between when
Heartbeat is started and before the network or serial interfaces are
ready to send and receive heartbeats. The optional initdead directive
takes care of this issue by setting an initial deadtime that applies

www. l inux journa l .com november 2007 | 53

Listing 1. The /etc/ha.d/authkeys File

auth 1

1 sha1 ThisIsAVeryLongAndBoringPassword

Listing 2. The /etc/ha.d/ha.cf File on Briggs & Stratton

keepalive 2

deadtime 32

warntime 16

initdead 64

baud 19200

On briggs the serial device is /dev/ttyS1

On stratton the serial device is /dev/ttyS0

serial /dev/ttyS1

auto_failback on

node briggs

node stratton

use_logd yes

Listing 3. The /etc/ha.d/ha.cf File on Deimos & Phobos

keepalive 1

deadtime 10

warntime 5

udpport 694

deimos' heartbeat ip address is 192.168.1.11

phobos' heartbeat ip address is 192.168.1.21

ucast eth1 192.168.1.11

auto_failback off

stonith_host deimos wti_nps ares.example.com erisIsTheKey

stonith_host phobos wti_nps ares.example.com erisIsTheKey

node deimos

node phobos

use_logd yes

http://www.linuxjournal.com

only when Heartbeat is first started.
You can send heartbeats over serial

or Ethernet links—either works fine. I
like serial for two server clusters that are
physically close together, but Ethernet
works just as well. The configuration for
serial ports is easy; simply specify the
baud rate and then the serial device you
are using. The serial device is one place
where the ha.cf files on each node may
differ due to the serial port having dif-
ferent names on each host. If you don’t
know the tty to which your serial port is
assigned, run the following command:

setserial -g /dev/ttyS*

If anything in the output says “UART:
unknown”, that device is not a real serial
port. If you have several serial ports, exper-
iment to find out which is the correct one.

If you decide to use Ethernet, you have
several choices of how to configure things. For simple two-server clusters,
ucast (uni-cast) or bcast (broadcast) work well.

The format of the ucast line is:

ucast <device> <peer-ip-address>

Here is an example:

ucast eth1 192.168.1.30

If I am using a crossover cable to connect two hosts together, I
just broadcast the heartbeat out of the appropriate interface. Here
is an example bcast line:

bcast eth3

There is also a more complicated method called mcast. This
method uses multicast to send out heartbeat messages. Check the
Heartbeat documentation for full details.

Now that we have Heartbeat transportation all sorted out, we
can define auto_failback. You can set auto_failback either to on or
off. If set to on and the primary node fails, the secondary node
will “failback” to its secondary standby state when the primary
node returns. If set to off, when the primary node comes back, it
will be the secondary.

It’s a toss-up as to which one to use. My thinking is that so
long as the servers are identical, if my primary node fails, then the
secondary node becomes the primary, and when the prior primary
comes back, it becomes the secondary. However, if my secondary
server is not as powerful a machine as the primary, similar to how
the spare tire in my car is not a “real” tire, I like the primary to
become the primary again as soon as it comes back.

Moving on, when Heartbeat thinks a node is dead, that is just
a best guess. The “dead” server may still be up. In some cases, if
the “dead” server is still partially functional, the consequences are
disastrous to the other node members. Sometimes, there’s only
one way to be sure whether a node is dead, and that is to kill it.
This is where STONITH comes in.

STONITH stands for Shoot The Other
Node In The Head. STONITH devices are
commonly some sort of network power-
control device. To see the full list of
supported STONITH device types, use the
stonith -L command, and use stonith
-h to see how to configure them.

Next, in the ha.cf file, you need to list
your nodes. List each one on its own line,
like so:

node deimos

node phobos

The name you use must match the output
of uname -n.

The last entry in my example ha.cf files is
to turn on logging:

use_logd yes

There are many other options that can’t
be touched on here. Check the documentation for details.

The haresources File
The third configuration file is the haresources file. Before configuring
it, you need to do some housecleaning. Namely, all services that you
want Heartbeat to manage must be removed from the system init
for all init levels.

On Debian-style distributions, the command is:

/usr/sbin/update-rc.d -f <service_name> remove

Check your distribution’s documentation for how to do the
same on your nodes.

Now, you can put the services into the haresources file. As
with the other two configuration files for Heartbeat, this one
probably won’t be very large. Similar to the authkeys file, the
haresources file must be exactly the same on every node. And,
like the ha.cf file, position is very important in this file. When
control is transferred to a node, the resources listed in the
haresources file are started left to right, and when control is
transfered to a different node, the resources are stopped right to
left. Here’s the basic format:

<node_name> <resource_1> <resource_2> <resource_3> . . .

The node_name is the node you want to be the primary on
initial startup of the cluster, and if you turned on auto_failback,
this server always will become the primary node whenever it is up.
The node name must match the name of one of the nodes listed
in the ha.cf file.

Resources are scripts located either in /etc/ha.d/resource.d/ or
/etc/init.d/, and if you want to create your own resource scripts,
they should conform to LSB-style init scripts like those found in
/etc/init.d/. Some of the scripts in the resource.d folder can take
arguments, which you can pass using a :: on the resource line. For
example, the IPAddr script sets the cluster IP address, which you
specify like so:

54 | november 2007 www.l inux journa l .com

Sometimes,
there’s only one
way to be sure
whether a node

is dead, and
that is to kill it.
This is where

STONITH
comes in.

FEATURE Getting Started with Heartbeat

http://www.linuxjournal.com

IPAddr::192.168.1.9/24/eth0

In the above example, the IPAddr resource is told to set up a
cluster IP address of 192.168.1.9 with a 24-bit subnet mask
(255.255.255.0) and to bind it to eth0. You can pass other
options as well; check the example haresources file that ships
with Heartbeat for more information.

Another common resource is Filesystem. This resource is for
mounting shared filesystems. Here is an example:

Filesystem::/dev/etherd/e1.0::/opt/data::xfs

The arguments to the Filesystem resource in the example
above are, left to right, the device node (an ATA-over-Ethernet
drive in this case), a mountpoint (/opt/data) and the filesystem
type (xfs).

For regular init scripts in /etc/init.d/, simply enter them by
name. As long as they can be started with start and stopped
with stop, there is a good chance that they will work.

Listings 4 and 5 are haresources files for two of the clusters I run.
They are paired with the ha.cf files in Listings 2 and 3, respectively.

The cluster defined in Listings 2 and 4 is very simple, and it
has only two resources—a cluster IP address and the Apache 2
Web server. I use this for my personal home Web server cluster.
The servers themselves are nothing special—an old PIII tower
and a cast-off laptop. The content on the servers is static HTML,
and the content is kept in sync with an hourly rsync cron job.
I don’t trust either “server” very much, but with Heartbeat, I
have never had an outage longer than half a second—not bad
for two old castaways.

The cluster defined in Listings 3 and 5 is a bit more complicated.
This is the NFS cluster I administer at work. This cluster utilizes
shared storage in the form of a pair of Coraid SR1521 ATA-over-
Ethernet drive arrays, two NFS appliances (also from Coraid) and
a STONITH device. STONITH is important for this cluster, because
in the event of a failure, I need to be sure that the other device
is really dead before mounting the shared storage on the other
node. There are five resources managed in this cluster, and to
keep the line in haresources from getting too long to be readable,
I break it up with line-continuation slashes. If the primary cluster
member is having trouble, the secondary cluster kills the primary,

takes over the IP address, mounts the shared storage and
then starts up NFS. With this cluster, instead of having mainte-
nance issues or other outages lasting several minutes to an
hour (or more), outages now don’t last beyond a second or two.
I can live with that.

Troubleshooting
Now that your cluster is all configured, start it with:

/etc/init.d/heartbeat start

Things might work perfectly or not at all. Fortunately, with
logging enabled, troubleshooting is easy, because Heartbeat
outputs informative log messages. Heartbeat even will let
you know when a previous log message is not something you
have to worry about. When bringing a new cluster on-line, I
usually open an SSH terminal to each cluster member and tail
the messages file like so:

tail -f /var/log/messages

Then, in separate terminals, I start up Heartbeat. If there are any
problems, it is usually pretty easy to spot them.

Heartbeat also comes with very good documentation. Whenever
I run into problems, this documentation has been invaluable. On
my system, it is located under the /usr/share/doc/ directory.

Conclusion
I’ve barely scratched the surface of Heartbeat’s capabilities here.
Fortunately, a lot of resources exist to help you learn about
Heartbeat’s more-advanced features. These include active/passive
and active/active clusters with N number of nodes, DRBD, the
Cluster Resource Manager and more. Now that your feet are wet,
hopefully you won’t be quite as intimidated as I was when I first
started learning about Heartbeat. Be careful though, or you might
end up like me and want to cluster everything.�

Daniel Bartholomew has been using computers since the early 1980s when his parents purchased
an Apple IIe. After stints on Mac and Windows machines, he discovered Linux in 1996 and has
been using various distributions ever since. He lives with his wife and children in North Carolina.

www.l inux journa l .com november 2007 | 55

Listing 4. A Minimalist haresources File

stratton 192.168.1.41 apache2

Listing 5. A More Substantial haresources File

deimos \

IPaddr::192.168.12.1 \

Filesystem::/dev/etherd/e1.0::/opt/storage::xfs \

killnfsd \

nfs-common \

nfs-kernel-server

Resources

The High-Availability Linux Project: www.linux-ha.org

Heartbeat Home Page: www.linux-ha.org/Heartbeat

Getting Started with Heartbeat Version 2:
www.linux-ha.org/GettingStartedV2

An Introductory Heartbeat Screencast:
linux-ha.org/Education/Newbie/InstallHeartbeatScreencast

The Linux-HA Mailing List:
lists.linux-ha.org/mailman/listinfo/linux-ha

http://www.linuxjournal.com
http://www.linux-ha.org
http://www.linux-ha.org/Heartbeat
http://www.linux-ha.org/GettingStartedV2

56 | november 2007 www.l inux journa l .com

Building
a Scalable

High-Availability
E-Mail System

with Active
Directory

and More
A large-scale implementation

of a scalable Linux e-mail
system with Active Directory.

Jack Chongjie Xue

Figure 1. HOBBIT OpenVMS Cluster Hardware Figure 2. Linux E-Mail Server Blades and SAN

In early 2006,
Marshall University laid out a plan to

migrate HOBBIT (Figure 1), an HP

OpenVMS cluster handling university-wide

e-mail services. Plagued with increasing

spam attacks, this cluster experienced

severe performance degradation.

Although our employee e-mail store was

moved to Microsoft Exchange in recent

years, e-mail routing, mailing list and

student e-mail store (including IMAP

and POP3 services) were still served by

OpenVMS with about 30,000 active users.

HOBBIT’s e-mail software, PMDF, provided

a rather limited feature set while charging

a high licensing fee. A major bottleneck

was discovered on its external disk storage

system: the dated storage technology

resulted in a limited disk I/O throughput

(40MB/second at maximal) in an e-mail

system doing intensive I/O operations.

To resolve the existing e-mail perfor-

mance issues, we conducted brainstorm-

ing sessions, requirements analysis, prod-

uct comparison and test-lab prototyping.

We then came up with the design of our

new e-mail system: it is named MUMAIL

(Figure 2) and uses standard open-source

software (Postfix, Cyrus-IMAP and MySQL)

installed on Red Hat Enterprise Linux. The

core system consists of front-end e-mail

hub and back-end e-mail store. The

front-end e-mail hub uses two Dell blade

servers running Postfix on Linux. Network

load balancing is configured to distribute

load between them. The back-end e-mail

store consists of two additional blade

servers running a Cyrus-IMAP aggregation

setup. Each back-end node is then

attached to a different storage group on

the EMC Storage Area Network (SAN). A

fifth blade server is designated as a master

node to store centralized user e-mail

settings. Furthermore, we use LDAP and

Kerberos to integrate the e-mail user iden-

tities with Windows Active Directory (AD).

Figure 3 illustrates our new e-mail

system architecture and the subsystem

interactions with existing services, which

include Webmail, AD and SMTP gateway.

The block diagrams highlighted in red are

the components to be studied in detail.

http://www.linuxjournal.com

Related Solutions
Before we zoom further into
our new e-mail system, I
want to mention some of the
existing Linux/UNIX e-mail
solutions in higher-education
environments. First, the HEC
Montréal e-mail system
discussed in a Linux Journal
article (see Resources) influ-
enced our design, which is
based on Cyrus-IMAP and
Postfix. Second, we looked
into Cambridge University’s
solution. It uses custom IMAP
proxy front-end servers and
multiple pairs of Cyrus-IMAP
mail store servers replicating
data to each other.
Furthermore, Carnegie
Mellon University (CMU),
which originally developed Cyrus-IMAP, uses Sendmail as the
front-end mail exchanger and a Cyrus-IMAP Murder Aggregator
setup on the back end. Columbia University moved its e-mail
system to a Cyrus-IMAP-based solution in 2006, and the University
of Indiana moved to Cyrus back in 2005. Cyrus and Postfix also
are used by Stanford University.

Although the designs of these related solutions are different,
most of them use a cluster-based approach that separates
mail transport/delivery from the mail store. Multiple front-end
MTA-MDA (Mail Transport Agent and Mail Delivery Agent) servers
are set up to deliver mail to the back-end mail store, which then
saves messages either in a filesystem (for example, Maildir) or a
database. Most of the solutions use Cyrus-IMAP (on UNIX or
Linux) as their mail store server.

Detailed Design
Some distinctive differences set our design apart from the
existing solutions:

1. Instead of using a separate directory service (such as OpenLDAP)
for user authentication, our design integrates user identities with
Windows Active Directory (AD).

2. Rather than using an LDAP server to store user e-mail routing
settings, we designed a relational database to store these settings.

3. In the mail store setup, instead of using an active-passive high-
availability cluster setup, like the HEC approach or the Cyrus
replication approach developed at Cambridge, we deployed the
Cyrus-Murder Aggregator. Unlike the CMU Cyrus Aggregator
server allocation, which uses separate MTA server nodes, we
consolidate both MTA and Cyrus Proxy functions to run on our
front-end mail hub nodes.

We designed an e-mail user database (running MySQL on the
Master node) to serve as a centralized data store for information

including e-mail accounts, user e-mail routing, group aliases and
mailing lists. Web-based user interfaces were developed using
PHP to allow users to make changes to their settings in the
database. Automated scripts running on the front-end nodes
will query the database for user settings and build Postfix maps
to apply these settings.

A Postfix server can be thought of as routers (not for IP pack-
ets but for e-mail). For each e-mail message, Postfix looks at the
destination (envelope recipient) and the source (envelope sender)
and then chooses how to route the e-mail message closer to its
destination. Lookup tables called Maps (such as Transport, Virtual,
Canonical and Alias Maps) are used to find the next-hop e-mail
delivery location or apply e-mail address re-rewrites.

A background job is running on each of the front-end e-mail
hub nodes to “pull” the e-mail settings (delivery location, e-mail
alias and group alias information) stored in the e-mail user database
to the Postfix maps (aliases, virtual, canonical and transport).
Written in Perl, the program is configured to run periodically as
a crond job.

Our design principle of the new e-mail system is to scale out
from a single, monolithic architecture to multiple nodes sharing
the same processing load. In a large e-mail environment, scaling
out the front-end MTA system is considerably easier compared
with scaling out the back-end mail store. As the front-end nodes
are essentially data-less, using DNS or IP-based load balancing on
multiple front-end servers is a typical practice. However, the same
technique cannot be applied to design the back-end mail store
where the user data resides. Without clustering, shared storage or
additional software components (such as a proxy server), multiple
mail store servers cannot share the same IMAP/POP3 process load
under a unified service namespace. Because of this, using a single
mail store server tends to be an obvious solution. However, one
node usually implies elevated server hardware expenses when
more powerful server hardware needs to be purchased to accom-
modate the ever-increasing system load. The price of a mid-range
server with four CPUs is usually much higher than the total price

www. l inux journa l .com november 2007 | 57

Figure 3. System Architecture

http://www.linuxjournal.com

of three or more entry-class servers. Furthermore, a single-node
architecture reduces system scalability and creates a single point
of failure.

The Cyrus-IMAP package is proven to be robust and suitable in
large settings. It differs from other Maildir or mbox IMAP servers
in that it is intended to run as a “sealed” mailbox server—the
Cyrus mailbox database is stored in parts of the filesystem that are
private to the Cyrus-IMAP system. More important, a multiple
server setup using Cyrus Murder aggregation is supported. It
scales out the system’s load by using multiple front-end IMAP
proxies to direct IMAP/POP3 traffic to multiple back-end mail store
nodes. Although we found other ways to scale out Cyrus-IMAP—
for example, Cambridge University’s pair-wise replication
approach, mentioned in the Related Solutions section of this
article, or using a clustered filesystem to share IMAP storage
partitions between multiple servers with products like Red Hat’s
Global File System (GFS)—compared with the aggregation
approach, these solutions either are too customized to support
(the Cambridge approach) or involve extra cost (GFS is sold
separately by Red Hat, Inc.).

So, the Cyrus-IMAP Aggregation approach was adopted.
Figure 4 illustrates the setup: two Cyrus back-end servers were set
up, and each handles half the user population. Two Postfix MTA
front-end nodes are designated to serve the proxy functions.
When e-mail clients connect through SMTP/IMAP/POP3 to the
front-end servers, the Cyrus Proxy service will communicate with

the Cyrus Master node using the MUPDATE protocol, so that it
gets the information about which Cyrus back-end node stores
e-mail for the current client. Furthermore, the back-end Cyrus
nodes will notify the Master node about the mailbox changes
(creating, deleting and renaming mailboxes or IMAP folders) in
order to keep the master updated with the most current mailbox
location information. The Master node replicates these changes
to the front-end proxy nodes, which direct the incoming
IMAP/POP3/LMTP traffic. The MUPDATE protocol is used to
transmit mailbox location changes.

Although it is not a fully redundant solution (the Master node
is still a single point of failure), and half our users will suffer a
usage outage if either one of the back-end nodes is down, the
aggregator setup divides the IMAP processing load across multiple
servers with each taking 50% of the load. As a result of this
division of labor, the new mail store system is now scalable to
multiple servers and is capable of handling a growing user population
and increasing disk usage. More back-end Cyrus nodes can join
with the aggregator to scale up the system.

Integration with Active Directory
One of the requirements of our new e-mail system is to integrate
user identities with the university directory service. Because Microsoft
Active Directory services have been made a standard within our
centralized campus IT environment, Cyrus (IMAP/POP3) and Postfix
(SMTP) are architected to obtain user authentication/authorization
from AD. After the integration, all e-mail user credentials can be
managed from AD. Most directory services are constructed based
on LDAP. AD uses LDAP for authorization, and it has its own
Kerberos implementation for authentication. The goal of an
integrated AD authentication is to allow the Linux e-mail servers
to use AD to verify user credentials. The technology used to
support the AD integration scheme is based mainly on the
Kerberos and LDAP support, which come with native Linux
components, as shown in Figure 5.

Here is how it works. First, we use AD Kerberos to authenti-
cate Linux clients. Pluggable Authentication Module (PAM) is con-
figured to get the user credentials and pass them to the pam_krb5
library, which is then used to authenticate users using the Linux
Kerberos client connection to the Key Distribution Center (KDC)
on Active Directory. This practice eliminates the need for authenti-
cation administration on the Linux side. However, with only the
Kerberos integration, Linux has to store authorization data in
the local /etc/passwd file. To avoid managing a separate user

58 | november 2007 www.l inux journa l .com

Figure 4. Cyrus-IMAP Aggregation Setup

Figure 5. Linux Authentication and Authorization Against AD

FEATURE Building a Scalable High-Availability E-Mail System with Active Directory & More

http://www.linuxjournal.com

authorization list, LDAP is used to retrieve user authorization informa-
tion from AD. The idea is to let authorization requests processed by
Name Service Switch (NSS) first. NSS allows the replacement of many
UNIX/Linux configuration files (such as /etc/passwd, /etc/group
and /etc/hosts) with a centralized database or databases, and the
mechanisms used to access those databases are configurable. NSS
then uses the Name Service Caching Dæmon (NSCD) to improve
query performance. (NSCD is a dæmon that provides a cache for
the most common name service requests.) This can be very impor-
tant when used against a large AD user container. Finally,
NSS_LDAP is configured to serve as an LDAP client to connect to
Active Directory to retrieve the authorization data from the AD
users container. (NSS_LDAP, developed by PADL, is a set of C
library extensions that allow LDAP directory servers to be used as
a primary source of aliases, ethers, groups, hosts, networks,
protocol, users, RPCs, services and shadow passwords.) Now,
with authorization and authentication completely integrated with
AD using both LDAP and Kerberos, no local user credentials need
to be maintained.

In order to support LDAP authorization integration with Linux,
Windows Server 2003 Release 2 (R2), which includes support
for RFC 2307, is installed on each of the AD domain controllers.
R2 introduces new LDAP attributes used to store UNIX or Linux
user and group information. Without an extended AD LDAP
schema, like the one used by R2, the Linux automatic authoriza-
tion integration with AD is not possible. It is also important to
mention that the SASL Authentication layer shown in Figure 3
is using Cyrus-SASL, which is distributed as a standard package
by Carnegie Mellon University. The actual setup uses PAM for
authenticating IMAP/POP3 users. It requires the use of a special
Cyrus dæmon, saslauthd, which the SASL mechanism uses to
communicate via a Linux-named socket.

Conclusion
Our new e-mail system is mostly based on open-source software.
The incorporation of Postfix, Cyrus-IMAP and MySQL helped to
fulfill most of the system requirements. From the hardware per-
spective, the technologies used, such as Storage Area Network
(SAN), blade server and the Intel x86_64 CPUs, helped meet the
requirements of fast access, system scalability and high availability.
However, the use of open-source software and new hardware
technologies may introduce new management overhead. Although
all the open-source software packages used on the new system
are mature products, compared with commercial software, they
typically lack a GUI for system management. Their configuration
and customization are completely based on a set of plain-text
configuration files. Initially, this may present a learning curve, as
the syntax of these configuration files must be studied. But, once
the learning curve is passed, future management easily can be
automated, as scripts can be written to manage the configuration
parameters and store them in a centralized location. On the
hardware side, complex settings also may imply complex network
and server management settings, which also may introduce overhead
during system management. However, the benefits of using the
technologies discussed outweigh the complexities and learning
curves involved. It is easy to overcome the drawbacks through proper
design, configuration management and system automation.

At the time of this writing, our new Linux e-mail system
(MUMAIL) has been running in production for ten months. The
entire system has been running in a stable state with minimal

downtime throughout this period. All user e-mail messages
originally on HOBBIT were moved successfully to MUMAIL in a
three-day migration window with automated and non-disruptive
migration processes. Users now experience significantly faster
IMAP/POP3 access speed. Their e-mail storage quota is raised
from 20MB to 200MB, and there is potential to increase the quota
to a higher number (1GB). With the installation of gateway-level
spam/virus firewalls as well as increased hardware speed, no
e-mail backlog has been experienced on MUMAIL during recent
spam/virus outbreaks. With an Active Directory integrated user
authentication setup, user passwords or other sensitive informa-
tion are no longer stored on the e-mail system. This reduces user
confusion and account administration overhead and increases
network security. Mail store backup speed is improved significantly
with faster disk access in the SAN environment. Finally, the new
system has provided a hardware and software environment that
supports future growth with the adoption of a scalable design.
More server nodes—both front end and back end—and storage
can be added when system usage grows in the future.�

Jack Chongjie Xue holds a Masters’ degree in Information Systems from Marshall University,
where he did Linux and Windows systems administration work. His job duties now include devel-
oping Business Intelligence applications and working on data mining projects at Marshall.

www.l inux journa l .com november 2007 | 59

Resources

“Migration of Alcator C-Mod Computer Infrastructure to Linux” by
T. W. Fredian, M. Greenwald and J. A. Stillerman:
www.psfc.mit.edu/~g/papers/fed04.pdf

“HEC Montréal: Deployment of a Large-Scale Mail Installation” by
Ludovic Marcotte: www.linuxjournal.com/article/9323

Cyrus-IMAP Aggregation: cyrusimap.web.cmu.edu/ag.html

“Scaling up Cambridge University’s E-Mail Service” by David Carter
and Tony Finch: www-uxsup.csx.cam.ac.uk/~fanf2/hermes/
doc/talks/2004-02-ukuug/paper.html

CMU’s Cyrus-IMAP Configuration:
cyrusimap.web.cmu.edu/configuration.html

Columbia’s Cyrus-IMAP Move:
www.columbia.edu/cu/news/05/12/cyrus.html

Indiana’s Cyrus-IMAP Information:
uitspress.iu.edu/040505_cyrus.html

Stanford’s E-Mail System Discussion:
www.stanford.edu/dept/its/vision/email.html

Windows Security and Directory Services for UNIX Guide:
www.microsoft.com/downloads/details.aspx?familyid=144f
7b82-65cf-4105-b60c-44515299797d&displaylang=en

“Toward an Automated Vulnerability Comparison of Open-Source
IMAP Servers” by Chaos Golubitsky: www.usenix.org/events/
lisa05/tech/golubitsky/golubitsky.pdf

http://www.psfc.mit.edu/~g/papers/fed04.pdf
http://www.linuxjournal.com/article/9323
http://www.columbia.edu/cu/news/05/12/cyrus.html
http://www.stanford.edu/dept/its/vision/email.html
http://www.microsoft.com/downloads/details.aspx?familyid=144f
http://www.usenix.org/events
http://www.linuxjournal.com

60 | november 2007 www.l inux journa l .com

DISTRIBUTED COMPILING

with distcc
You don’t need a cluster to get cluster-like

performance out of your compiler.
One of the most frustrating aspects of open-source development
is all the time spent waiting for code to compile. Right now,
compiling KDE’s basic modules and libraries on a single machine
takes me around three hours, and that’s just to get a desktop.
Even with a core 2 duo, it’s a lot of time to sit around and wait.

With another pair of core duo machines at my disposal, I’d
love to be able to use all of their processing power combined.
Enter distcc.

distcc is a program that allows one to distribute the load of
compiling across multiple machines over the network. It’s essen-
tially a front end to GCC that works for C, C++, Objective C and
Objective C++ code. It doesn’t require a large cluster of compile
hosts to be useful—significant compile time decreases can be
seen by merely adding one other similarly powered machine. It’s
a very powerful tool in a workplace or university environment
where you have a lot of similar workstations at your disposal, but
one of my favourite uses of distcc is to be able to do develop-
ment work on my laptop from the comfort of the café downstairs
and push all the compiles up over wireless to my more powerful
desktop PC upstairs. Not only does it get done more quickly, but
also the laptop stays cooler.

It’s not necessary to use the same distribution on each system,
but it’s strongly recommended that you use the same version of
GCC. Unless you have set up cross-compilers, it’s also required
that you use the same CPU architecture and the same operating
system. For example, Linux (using ELF binaries) and some BSDs
(using a.out) are not, by default, able to compile for each other.
Code can miscompile in many creative and frustrating ways if the
compilers are mismatched.

JES HALL

http://www.linuxjournal.com

Installation
The latest version of distcc, at the time of this writing, is 2.18.3. There
are packages for most major distributions, or you can download the
tarball and compile it. It follows the usual automake procedure of
./configure; make; make install; see the README and INSTALL
files for details.

distcc needs to be called in place of the compiler. You simply can
export CC=distcc for the compilers you want to replace with it, but
on a development workstation, I prefer something a little more perma-
nent. I like to create symlinks in ~/bin, and set it to be at the front of
my PATH variable. Then, distcc always is called. This approach used to
work around some bugs in the version of ld that was used in building
KDE, and it is considered to have the widest compatibility (see the
distcc man page for more information):

mkdir ~/bin for i in cc c++ gcc g++; do ln -s `which distcc` ~/bin/$i; done

If ~/bin is not already at the beginning of your path, add it to your
shellrc file:

export PATH=~/bin:$PATH

setenv PATH ~/bin:$PATH

for bourne- and C-compatible shells, respectively.

Client Configuration
Each client needs to run the distcc dæmon and needs to allow
connections from the master host on the distcc port (3632). The
dæmon can be started manually at boot time by adding it to
rc.local or bootmisc.sh (depending on the distribution) or even
from an inetd. If distccd is started as an unprivileged user account,
it will retain ownership by that UID. If it is started as root, it will
attempt to change to the distcc or nobody user. If you want to
start the dæmon as root (perhaps from an init script) and change
to a user that is not distcc or nobody, the option -user allows you
to select which user the dæmon should run as:

distccd -user jes -allow 192.168.80.0/24

In this example, I also use the -allow option. This accepts a
hostmask in common CIDR notation and restricts distcc access to
the hosts specified. Here, I restrict access only to servers on the
particular subnet I’m using on my home network—machines with
addresses in the 192.168.80.1–192.168.80.254 range. If you are
particularly security-conscious, you could restrict it to a single address
(192.168.80.5) or any range of addresses supported by this notation.
I like to leave it pretty loose, because I often change which host is the
master depending on what I’m compiling and when.

Compiling
Back on the master system on which you plan to run your compiles,
you need to let distcc know where the rest of your cluster is. There are
two ways of achieving this. You can add the hostnames or IP addresses
of your cluster to the file ~/.distcc/hosts, or you can export the variable
DISTCC_HOSTS delimited by whitespace. These names need to
resolve—either add the names you want to use to /etc/hosts, or use
the IP addresses of the hosts if you don’t have internal DNS:

192.168.80.128 192.168.80.129 localhost

The order of the hosts is extremely important. distcc is unable to
determine which hosts are more powerful or under less load and
simply distributes the compile jobs in order. For jobs that can’t be
run in parallel, such as configure tests, this means the first host in
the list will bear the brunt of the compiling. If you have machines of
varying power, it can make a large difference in compile time to put
the most powerful machines first and the least powerful machine
last on the list of hosts.

Depending on the power of the computer running distcc, you may
not want to include localhost in the list of hosts at all. Localhost has to
do all of the preprocessing—a deliberate design choice that means
you don’t need to ensure that you have the same set of libraries and
header files on each machine—and also all of the linking, which is
often hugely processor-intensive on a large compile. There is also a
certain small amount of processing overhead in managing shipping
the files around the network to the other compilers. As a rule of
thumb, the distcc documentation recommends that for three to
four hosts, localhost probably should be placed last on the list,
and for greater than five hosts, it should be excluded altogether.

Now that you have your cluster configured, compiling is very simi-
lar to how you would have done it without distcc. The only real differ-
ence is that when issuing the make command, you need to specify
multiple jobs, so that the other machines in the cluster have some
work to do. As a general guide, the number of jobs should be approx-
imately twice the number of CPUs available. So, for a setup with three
single-core machines, you would use make -j6. For three dual-core
machines, you would use make -j 12. If you have removed localhost
from your list of hosts, don’t include its CPU or CPUs in this reckoning.

Figure 1. distccmon-text Monitoring a Compile

distcc includes two monitoring tools that can be used to watch
the progress of compile jobs. The console-based distccmon-text is
particularly excellent if your master host is being accessed via SSH.
As the user the compile job is running as, execute the command
distccmon-text $s, where $s is the number of seconds at which
you would like it to refresh. For example, the following:

distccmon-text 5

updates your monitor every five seconds with compile job information.
The graphical distccmon-gnome is distributed as part of distcc if

you compile from source, but it may be a separate package depending
on your distribution. It provides similar information in a graphical dis-
play that allows you to see at a glance which hosts are being heavily
utilised and whether jobs are being distributed properly. It often takes

www. l inux journa l .com november 2007 | 61

http://www.linuxjournal.com

a few tries to get the order of hosts at the most optimal—tools like
distccmon-gnome make it easier to see whether machines are being
under- or over-utilised and require moving in the build order.

Figure 2. Graphical distcc Monitoring

Security
distcc relies on the network being trusted. Anyone who is able to con-
nect to the machine on the distcc port can run arbitrary commands on
that host as the distcc user. It is vitally important that distccd processes
are not run as root but are run as the distcc or nobody user. It’s also
extremely important to think carefully about your -allow statements
and ensure that they are locked down appropriately for your network.

In an environment, such as a home or small workplace network,
where you’re security firewalled off from the outside world and
people can be made accountable for not being good neighbours
on the network, distcc is secure enough. It’s extremely unlikely
that anyone could or would exploit your distccd hosts if they’re
not running the dæmon as root and your allow statements limit
the connecting machines appropriately.

There is also the issue that those on the network can see your
distcc traffic—source code and object files on the wire for anyone to
reach out and examine. Again, on a trusted network, this is unlikely to
be a problem, but there are situations in which you would not want
this to happen, or could not allow this to happen, depending on what
code you are compiling and under what terms.

On a more hostile network, such as a large university campus or a
workplace where you know there is a problem with security, these
could become serious issues.

For these situations, distcc can be run over SSH. This ensures both
authentication and signing on each end, and it also ensures that the
code is encrypted in transit. SSH is typically around 25% slower due to
SSH encryption overhead. The configuration is very similar, but it
requires the use of ssh-keys. Either passphraseless keys or an ssh-agent
must be used, as you will be unable to supply a password for distcc to
use. For SSH connections, distccd must be installed on the clients, but
it must not be listening for connections—the dæmons will be started

over SSH when needed.
First, create an SSH key

using ssh-keygen -t dsa,
then add it to the target user’s
~/.ssh/authorized_keys on your
distcc hosts. It’s recommended
always to set a passphrase on
an SSH key for security.

In this example, I’m using
my own user account on all of the hosts and a simple bash loop to
distribute the key quickly:

for i in 192.168.80.120 192.168.80.100; do cat ~/.ssh/id_dsa.pub

�| ssh jes@$i 'cat - >> ~/.ssh/authorized_keys'; done

To let distcc know that it needs to connect to the hosts under SSH,
modify either the ~/.distcc/hosts file or $DISTCC_HOSTS variable. To
instruct distcc to use SSH, simply add an @ to the beginning of the
hostname. If you need to use a different user name on any of the
hosts, you can specify it as user@host:

localhost @192.168.80.100 @192.168.80.120

Because I’m using a key with a passphrase, I also need to start
my SSH agent with ssh-add and enter my passphrase. For those
unfamiliar with ssh-agent, it’s a tool that ships with OpenSSH that
facilitates needing to enter the passphrase for your key only once
a session, retaining it in memory.

Now that we’ve set up SSH keys and told distcc to use a secure
connection, the procedure is the same as before—simply make -jn.

Other Options
This method of modifying the hostname with the options you want
distcc to honour can be used for more than specifying the connection
type. For example, the option /limit can be used to override the
default number of jobs that will be sent to the distccd servers. The
original limit is four jobs per host except localhost, which is sent only
two. This could be increased for servers with more than two CPUs.

Another option is to use lzo compression for either TCP or SSH
connections. This increases CPU overhead, but it may be worthwhile
on slow networks. Combining these two options would be done with:

localhost 192.168.80.100/6,lzo

This option increases the jobs sent to 192.168.80.100 to six, and it
enables use of lzo compression. These options are parsed in a specific
order, so some study of the man page is recommended if you intend
to use them. A full list of options with examples can be found on the
distcc man page.

The flexibility of distcc covers far more than explained here. One
popular configuration is to use it with ccache, a compiler cache. distcc
also can be used with crossdev to cross-compile for different architec-
tures in a distributed fashion. Now, your old SPARC workstation can
get in on the act, or your G5 Mac-turned-Linux box can join the party.
These are topics for future articles though; for now, I’m going to go
play with my freshly compiled desktop environment.�

Jes Hall is a UNIX systems consultant and KDE developer from New Zealand. She’s passionate
about helping open-source software bring life-changing information and tools to those who
would otherwise not have them.

62 | november 2007 www.l inux journa l .com

It doesn’t require a large cluster of compile
hosts to be useful—significant compile time
decreases can be seen by merely adding
one other similarly powered machine.

FEATURE Distributed Compiling with distcc

mailto:@192.168.80.100
mailto:@192.168.80.120
http://www.linuxjournal.com

Hear Yourself Think Again!Hear Yourself Think Again!

WhisperStationWhisperStation
For 64-bit HPC, Gaming and Graphic Design Applications
Originally designed for a group of power hungry, demanding engineers in the automotive industry,
WhisperStation™ incorporates two dual core AMD Opteron™ or Intel® EM64T™ processors, ultra-quiet
fans and power supplies, plus internal sound-proofing that produce a powerful, but silent, computational
platform. The WhisperStation™ comes standard with 2 GB high speed memory, an NVIDIA e-GeForce
or Quadro PCI Express graphics adapter, and 20" LCD display. It can be configured to your exact
hardware specification with any Linux distribution. RAID is also available. WhisperStation™ will also
make a system administrator very happy, when used as a master node for a Microway cluster!
Visit www.microway.com for more technical information.

Experience the “Sound of Silence”.
Call our technical sales team at 508-746-7341 and design your personalized WhisperStation™ today.

Cool... Fast... Silent!Cool... Fast... Silent!Cool... Fast... Silent!

 ™

http://www.microway.com

64 | november 2007 www.l inux journa l .com

Writing applications to support multiple CPU cores is not an
easy task, and in some cases, it is even harder if you want to take
a huge existing application and adapt it for multiple cores. So I
figured the real breakthrough is likely to be years away. It seems
as if RapidMind has a solution for this problem that doesn’t
require a massive overhaul of an existing application, and its solution
is already available.

We invited RapidMind’s President and CEO Ray DePaul and
Founder and Chief Scientist Michael McCool to talk about RapidMind’s
approach to exploiting the power of multicore systems.

We deemed it important to look at RapidMind, because it
seems as if we’re finally entering the age of parallel processing on
the desktop as chip manufacturers bump up against the practical
limits of Moore’s Law. Everything from graphics cards to PlayStation
3 consoles exploit parallel processing these days. I have an Intel
quad-core processor in my workstation. Although I’m happy with
it, I find that the only time I truly appreciate having this multicore
chip is when I run multiple applications simultaneously or run
multiple processes, such as with the command make -j 5. If
anything, single-threaded applications run slower on this chip
than on the single-core CPU I used to run, because each core in
the Intel chip is significantly slower (2GHz vs. 3GHz).

So how does RapidMind bridge the gap between existing software
and the changing computational model?

LJ: Could you give us a brief description of RapidMind, and the
problem it is designed to solve?
DePaul: RapidMind is a multicore software platform that allows
software organizations to leverage the performance of multicore
processors and accelerators to gain a real competitive advantage
in their industry. With RapidMind, you can develop parallel applica-
tions with minimal impact on your development lifecycle, costs and
timelines. And, we allow you to accomplish this without the need
for multithreading. You leverage existing skills, existing compilers
and IDEs and take advantage of all key multicore architectures
without constantly porting your application.

LJ: So is it accurate to say RapidMind is actually a library of
common C/C++ operations, where the exploitation of multiple
cores is largely transparent to the programmer?
McCool: RapidMind is much more than a simple library of
“canned functions”. In fact, it is possible to use the API to the
RapidMind platform to specify an arbitrary computation, and for
that computation to execute in parallel with a very high level
of performance. We provide a sophisticated multicore software
platform that can leverage many levels of parallelization, but at
the same time allows developers to express their own computa-
tions in a very familiar, single-threaded way.

LJ: How much, if anything, does the programmer need to
know about parallel processing programming techniques
in order to use RapidMind?
McCool: We believe that developers are the application experts
and should have some involvement in moving their applications
into the parallel world. The key is to let developers leverage what
they already know, rather than force them down an unfamiliar
and frustrating path. RapidMind is built upon concepts already
familiar to all developers: arrays and functions. It is not necessary
for a developer to work directly with threads, vectorization, cores
or synchronization. Fundamentally, a developer can apply func-
tions to arrays, and this automatically invokes parallel execution.
A RapidMind-enabled program is a single-threaded sequence of
parallel operations and is much easier to understand, code and
test than the multithreaded model of parallel programming.

LJ: Can you give us a simple code example (the includes and
declaration statements that would start a typical program)?
McCool: First, you include the platform header file and optionally
activate the RapidMind namespace:

#include <rapidmind/platform.hpp> using namespace rapidmind;

Next, you can declare variables using RapidMind types for numbers
and arrays:

Value1f f; Array<2,Value3f> a, b;

The Value1f type is basically equivalent to a float, and the Array
types are used to manage large collections of data. These can be
declared anywhere you would normally declare C++ variables: as
members of classes or as local or global variables.

A Program object is the RapidMind representation of a function
and is created by enclosing a sequence of operations on RapidMind
types between RM_BEGIN and RM_END. The operations will then
be stored in the Program object. For example, suppose we want to
add a value f, represented using a global variable, to every element
of an array. We would create a program object prog as follows:

Program prog = RM_BEGIN {

In<Value1f> c; Out<Value1f> d;

d = c + f;

} RM_END;

Note that although the program may run on a co-processor,
we can just refer to external values like f in the same way we
would from a function definition. It is not necessary to write
any other code to set up the communication between the host

Picking the RapidMind
RapidMind has a mind to make advances in the use of
multicore programming rapidly available. NICHOLAS PETRELEY

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 65

processor and any co-processors.
To apply this operation to array a and put the result in array b, invok-

ing a parallel computation, we just use the program object like a function:

b = prog(a);

Of course, in real applications, program objects can contain a
large number of operations, and a sequence of program objects
and collective operations on arrays (such as scatter, gather and
reduce) would be used.

LJ: How do you avoid the common pitfalls of parallel process-

ing, such as deadlocks or other synchronization issues?
McCool: The semantics of the RapidMind interface does not involve
explicit locking or synchronization by the developer. The platform itself
automatically takes care of these issues when necessary at a lower
level in the runtime platform. The developer cannot specify programs
that deadlock or that have race conditions, in the same way that a
Java developer cannot specify programs that have memory leaks.

LJ: I see Hewlett-Packard software ran 32.2 times faster after
the software was adapted to use RapidMind. How long did it
take to modify the software to use RapidMind?
McCool: Our collaboration with HP was a great test of our plat-

RapidMind’s Founder and Chief Scientist Michael
McCool (left) and President and CEO Ray DePaul (right)

http://www.linuxjournal.com

66 | november 2007 www.l inux journa l .com

form. Roughly the same amount of time was
taken to RapidMind-enable the application as
was taken by HP to tune its single-core baseline
version. The tuning by HP sped up its version
by a factor of 4, whereas RapidMind running
on an NVIDIA 7900 GPU outperformed that by
a factor of more than 32. More recently, we
have run the same code on an NVIDIA 8800
GPU and sped it up by an additional factor of
5, and we also have run the RapidMind version
on our multicore CPU quad-core product and
achieved a speedup of 8 over HP’s version.

So the benefit to the software organization
is quite startling. For the same effort, you can
use RapidMind not only to get significantly
higher performance on the same multicore
processors you’re already targeting, but you
can leverage the additional performance of
accelerators as well. The RapidMind version
also will scale automatically to future processors
with more cores.

LJ: Is the speed increase in the HP software typical or “best
case”? What software is most likely to see speed increases?
Database server software? Complex queries on data ware-
housing? Spam filtering? Web browsers? Something else?
McCool: We have seen large speedups on a wide range of applica-
tions, including database operations, image and video processing,
financial modeling, pattern matching and analysis, many different
kinds of scientific computation—the list goes on and on. The
RapidMind platform supports a general-purpose programming model
and can be applied to any kind of computation. The HP test was
compute-bound, and it could take advantage of the high compute
performance of GPUs. However, in memory-bound applications, we
have also seen a significant benefit, over an order of magnitude,
from running the application on RapidMind. RapidMind not only
manages parallel execution, it also manages data flow and so can
also directly address the memory bottleneck. As a software platform
company, we are constantly surprised by the variety of applications
that developers are RapidMind-enabling. Prior to the launch of our
v2.0 product in May 2007, we had more than 1,000 developers
from many different industries in our Beta program. The problem
is industry-wide, and we have developed a platform that has very
broad applicability.

LJ: Shouldn’t this kind of adaptation to multiple cores take
place in something more fundamental like the GNU C Library?
Is it only a matter of time before such libraries catch up?
McCool: Simply parallelizing the standard library functions would not
have the same benefit, because they do not, individually, do enough
work. RapidMind programs, in contrast, can do an arbitrary amount of
user-specified parallel computation.

Although RapidMind looks like a library to the developer,
it’s important to realize that most of the work is done by the
runtime platform. The challenge facing multicore developers is
not one that can be solved solely with libraries. Developers need a
system that efficiently takes care of the complexities of multicore:

processor-specific optimization, data manage-
ment, dynamic load balancing, scaling for
additional cores and multiple levels of paral-
lelization. The RapidMind platform performs
all of these functions.

LJ: You support multiple platforms on differ-
ent levels. For example, you can exploit the
processors on NVIDIA and ATI graphics cards,
the Cell processor, as well as multicore CPUs.
In addition, you support both Linux and
Windows, correct?
DePaul: The processor vendors are delivering
some exciting and disruptive innovations.
Software companies are faced with some
tough choices—which vendors and which
architectures should they support. By leverag-
ing RapidMind, they get to benefit from all of
the hardware innovations and deliver better
products to their customers within their
current development cycles and timelines.
RapidMind will continue to provide portable

performance across a range of both processors and operating systems.
We will support future multicore and many-core processors, so
applications written with RapidMind today are future-proofed and
can automatically take advantage of new architectures that will
likely arise, such as increases in the number of cores.

LJ: Can you tell us more about your recently demonstrated
support for Intel and AMD multicore CPUs?
DePaul: It’s difficult to overstate the value we bring to software
companies targeting Intel and AMD multicore CPUs. For example,
at SIGGRAPH in San Diego, we demonstrated a 10x performance
improvement on an application running on eight CPU cores.
RapidMind-enabled applications will scale to any number of cores,
even across multiple processors, and will be tuned for both Intel
and AMD architectures. Software organizations can now target
multicore CPUs, as well as accelerators, such as ATI and NVIDIA
GPUs and the Cell processor, all with the same source code.

LJ: Is there anything else you’d like to tell our readers?
DePaul: It’s becoming clear that software organizations’ plans for
multicore processors and accelerators will be one of the most
important initiatives they take this year. Companies that choose to
do nothing will quickly find themselves behind the performance
curve. Companies that embark on large complex multithreading
projects will be frustrated with the costs and timelines, and in the
end, largely disappointed with the outcome. We are fortunate to
be partnering with a group of software organizations that see an
opportunity to deliver substantial performance improvements to
their customers without a devastating impact on their software
development cycles.

LJ: Thank you so much for your time! �

Nicholas Petreley is Editor in Chief of Linux Journal and a former programmer, teacher, analyst
and consultant who has been working with and writing about Linux for more than ten years.

INDEPTH

“For the same effort,
you can use

RapidMind not only
to get significantly

higher performance
on the same multicore

processors you’re
already targeting,

but you can leverage
the additional

performance of
accelerators as well.”

http://www.linuxjournal.com

TCP/IP network programming in C on Linux is good fun. All the
advanced features of the stack are at your disposal, and you can
do lot of interesting things in user space without getting into
kernel programming.

Performance enhancement is as much an art as it is a science. It is
an iterative process, akin to an artist gingerly stroking a painting with
a fine brush, looking at the work from multiple angles at different
distances until satisfied with the result.

The analogy to this artistic touch is the rich set of tools that Linux
provides in order to measure network throughput and performance.
Based on this, programmers tweak certain parameters or sometimes
even re-engineer their solutions to achieve the expected results.

I won’t dwell further upon the artistic side of high-performance
programming. In this article, I focus on certain generic mechanisms
that are guaranteed to provide a noticeable improvement. Based
on this, you should be able to make the final touch with the help
of the right tools.

I deal mostly with TCP, because the kernel does the bandwidth
management and flow control for us. Of course, we no longer have to
worry about reliability either. If you are interested in performance and
high-volume traffic, you will arrive at TCP anyway.

What Is Bandwidth?
Once we answer that question, we can ask ourselves another useful
question, “How can we get the best out of the available bandwidth?”

Bandwidth, as defined by Wikipedia, is the difference between the
higher and lower cutoff frequencies of a communication channel.
Cutoff frequencies are determined by basic laws of physics—nothing
much we can do there.

But, there is a lot we can do elsewhere. According to Claude
Shannon, the practically achievable bandwidth is determined by the
level of noise in the channel, the data encoding used and so on.
Taking a cue from Shannon’s idea, we should “encode” our data in
such a way that the protocol overhead is minimal and most of the bits
are used to carry useful payload data.

TCP/IP packets work in a packet-switched environment. We
have to contend with other nodes on the network. There is no
concept of dedicated bandwidth in the LAN environment where
your product is most likely to reside. This is something we can
control with a bit of programming.

Non-Blocking TCP
Here’s one way to maximize throughput if the bottleneck is your local
LAN (this might also be the case in certain crowded ADSL deploy-
ments). Simply use multiple TCP connections. That way, you can

ensure that you get all the attention at the expense of the other nodes
in the LAN. This is the secret of download accelerators. They open
multiple TCP connections to FTP and HTTP servers and download a file
in pieces and reassemble it at multiple offsets. This is not “playing”
nicely though.

We want to be well-behaved citizens, which is where non-blocking
I/O comes in. The traditional approach of blocking reads and writes on
the network is very easy to program, but if you are interested in filling
the pipe available to you by pumping packets, you must use non-
blocking TCP sockets. Listing 1 shows a simple code fragment using
non-blocking sockets for network read and write.

Note that you should use fcntl(2) instead of setsockopt(2) for
setting the socket file descriptor to non-blocking mode. Use poll(2)
or select(2) to figure out when the socket is ready to read or write.
select(2) cannot figure out when the socket is ready to write, so
watch out for this.

How does non-blocking I/O provide better throughput? The OS
schedules the user process differently in the case of blocking and
non-blocking I/O. When you block, the process “sleeps”, which

68 | november 2007 www.l inux journa l .com

INDEPTH

High-Performance Network
Programming in C
Programming techniques to get the best performance from your TCP applications.
GIRISH VENKATACHALAM

Figure 1. Possibilities in Non-Blocking Write with Scatter/Gather I/O

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 69

leads to a context switch. When you use non-blocking sockets, this
problem is avoided.

Scatter/Gather I/O
The other interesting technique is scatter/gather I/O or using readv(2)
and writev(2) for network and/or disk I/O.

Instead of using buffers as the unit of data transfer, an array of
buffers is used instead. Each buffer can be a different length, and this

is what makes it so interesting.
You can transfer large chunks of data split between multiple

sources/destinations from/to the network. This could be a useful
technique, depending upon your application. Listing 2 shows a
code snippet to illustrate its use.

When you combine scatter/gather I/O with non-blocking sockets,
things get a little complex, as shown in Figure 1. The code for tackling
this hairy issue is shown in Listing 3.

Listing 1. nonblock.c

/* set socket non blocking */

fl = fcntl(accsock, F_GETFL);

fcntl(accsock, F_SETFL, fl | O_NONBLOCK);

void

poll_wait(int fd, int events)

{

int n;

struct pollfd pollfds[1];

memset((char *) &pollfds, 0, sizeof(pollfds));

pollfds[0].fd = fd;

pollfds[0].events = events;

n = poll(pollfds, 1, -1);

if (n < 0) {

perror("poll()");

errx(1, "Poll failed");

}

}

size_t

readmore(int sock, char *buf, size_t n) {

fd_set rfds;

int ret, bytes;

poll_wait(sock,POLLERR | POLLIN);

bytes = readall(sock, buf, n);

if (0 == bytes) {

perror("Connection closed");

errx(1, "Readmore Connection closure");

/* NOT REACHED */

}

return bytes;

}

size_t

readall(int sock, char *buf, size_t n) {

size_t pos = 0;

ssize_t res;

while (n > pos) {

res = read (sock, buf + pos, n - pos);

switch ((int)res) {

case -1:

if (errno == EINTR || errno == EAGAIN)

continue;

return 0;

case 0:

errno = EPIPE;

return pos;

default:

pos += (size_t)res;

}

}

return (pos);

}

size_t

writenw(int fd, char *buf, size_t n)

{

size_t pos = 0;

ssize_t res;

while (n > pos) {

poll_wait(fd, POLLOUT | POLLERR);

res = write (fd, buf + pos, n - pos);

switch ((int)res) {

case -1:

if (errno == EINTR || errno == EAGAIN)

continue;

return 0;

case 0:

errno = EPIPE;

return pos;

default:

pos += (size_t)res;

}

}

return (pos);

}

http://www.linuxjournal.com

70 | november 2007 www.l inux journa l .com

A partial write of any buffer can occur, or you can get any combi-
nation of a few full writes and few partial writes. Therefore, the while
loop has to take care of all such possible combinations.

mmap(2) Disk I/O
Network programming is not all about sockets, however. We still
haven’t solved the problem of having to use hard disks, which are
mechanical devices and consequently are much slower than main
memory and even the network in many, if not most, cases (especially
high-performance computing environments).

You can use some other form of persistent storage, but today,
none matches the huge storage capacity that hard disks offer.
Currently, most applications on the Internet push several gigabytes
of data, and you end up with heavy storage needs anyway.

To test disk performance, type this:

$ hdparm -rT /dev/sda (/dev/hda if IDE)

Check whether you are getting good throughput. If not, enable
DMA and other safe options using this command:

$ hdparm -d 1 -A 1 -m 16 -u 1 -a 64 /dev/sda

We also need to be able to avoid redundant copies and other
time-consuming CPU operations to squeeze the maximum bandwidth
from the network. A very effective tool for achieving that is the versa-
tile mmap(2) system call. This is a very useful technique for avoiding
the copy-to-buffer cache and, hence, improves performance for net-
work I/O. But, if you use mmap(2) with NFS, you are asking for trou-
ble. Listing 4 shows a code snippet that illustrates the use of
mmap(2) for both reading and writing files.

Socket Options and sendfile(2)
TCP sockets under Linux come with a rich set of options with
which you can manipulate the functioning of the OS TCP/IP stack.
A few options are important for performance, such as the TCP
send and receive buffer sizes:

sndsize = 16384;

setsockopt(socket, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize,

(int)sizeof(sndsize));

rcvsize = 16384;

setsockopt(socket, SOL_SOCKET, SO_RCVBUF, (char *)&rcvsize,

(int)sizeof(rcvsize));

I am using conservative values here. Obviously, it should be
much higher for Gigabit networks. These values are
determined by the bandwidth delay product.
Interestingly, I have never found this to be an issue,
so I doubt if this would give you a performance
boost. It still is worth mentioning, because the TCP
window size alone can give you optimal throughput.

Other options can be set using the /proc pseudo-
filesystem under Linux (including the above two), and
unless your Linux distribution turns off certain options,
you won’t have to tweak them.

It is also a good idea to enable PMTU (Path
Maximum Transmission Unit) discovery to avoid
IP fragmentation. IP fragmentation can affect not
just performance, but surely it’s more important
regarding performance than anything else. To avoid
fragmentation at any cost, several HTTP servers use
conservative packet sizes. Doing so is not a very
good thing, as there is a corresponding increase in
protocol overhead. More packets mean more headers
and wasted bandwidth.

Instead of using write(2) or send(2) for transfer, you
could use the sendfile(2) system call. This provides sub-
stantial savings in avoiding redundant copies, as bits are
passed between the file descriptor and socket descriptor
directly. Be aware that this approach is not portable
across UNIX.

Advanced Techniques in Application
Design
Applications should be well designed to take full advan-
tage of network resources. First and foremost, using
multiple short-lived TCP connections between the same
two endpoints for sequential processing is wrong. It will
work, but it will hurt performance and cause several

INDEPTH

Listing 2. uio.c

#include <sys/types.h>

#include <sys/uio.h>

#include <unistd.h>

size_t

writeuio(int fd, struct iovec *iov, int cnt)

{

size_t pos = 0;

ssize_t res;

n = iov[0].iov_cnt;

while (n > pos) {

poll_wait(fd, POLLOUT | POLLERR);

res = writev (fd, iov[0].iov_base + pos, n - pos);

switch ((int)res) {

case -1:

if (errno == EINTR || errno == EAGAIN)

continue;

return 0;

case 0:

errno = EPIPE;

return pos;

default:

pos += (size_t)res;

}

}

return (pos);

}

http://www.linuxjournal.com

other headaches as well. Most notably, the TCP TIME_WAIT state has
a timeout of twice the maximum segment lifetime. Because the
round-trip time varies widely in busy networks and networks with
high latency, oftentimes this value will be inaccurate. There are other
problems too, but if you design your application well, with proper
protocol headers and PDU boundaries, there never should be a need
to use different TCP connections.

Take the case of SSH, for instance. How many different TCP
streams are multiplexed with just one connection? Take a cue from it.

You don’t have to work in lockstep between the client and the
server. Simply because the protocols and algorithms are visualized
in a fixed sequence does not imply that the implementation should
follow suit.

Listing 3. nonblockuio.c

writeiovall(int fd, struct iov *iov, int nvec) {

int i, bytes;

i = 0;

while (i < nvec) {

do

{

rv = writev(fd, &vec[i], nvec - i);

} while (rv == -1 &&

(errno == EINTR || errno == EAGAIN));

if (rv == -1) {

if (errno != EINTR && errno != EAGAIN) {

perror("write");

}

return -1;

}

bytes += rv;

/* recalculate vec to deal with partial writes */

while (rv > 0) {

if (rv < vec[i].iov_len) {

vec[i].iov_base = (char *)

vec[i].iov_base + rv;

vec[i].iov_len -= rv;

rv = 0;

}

else {

rv -= vec[i].iov_len;

++i;

}

}

}

/* We should get here only after we write out everything */

return 0;

}

http://www.asacomputers.com

72 | november 2007 www.l inux journa l .com

You can make excellent use of available bandwidth by doing things
in parallel—by not waiting for processing to complete before reading
the next packet off the network. Figure 2 illustrates what I mean.

Pipelining is a powerful technique employed in CPUs to speed up
the FETCH-DECODE-EXECUTE cycle. Here, we use the same technique
for network processing.

Obviously, your wire protocol should have the least overhead and
should work without relying much on future input. By keeping the state
machine fairly self-contained and isolated, you can process efficiently.

Avoiding redundant protocol headers or fields that are mostly
empty or unused can save you precious bandwidth for carrying real
data payloads. Header fields should be aligned at 32-bit boundaries
and so should the C structures that represent them.

If your application already is in production and you want to
enhance its performance, try some of the above techniques. It shouldn’t
be too much trouble to attack the problem of re-engineering an
application if you take it one step at a time. And remember, never
trust any theory—not even this article. Test everything for yourself. If
your testing does not report improved performance, don’t do it. Also,

INDEPTH

Listing 4. mmap.c

/**

* mmap(2) file write *

* *

***/

caddr_t *mm = NULL;

fd = open (filename, O_RDWR | O_TRUNC | O_CREAT, 0644);

if(-1 == fd)

errx(1, "File write");

/* NOT REACHED */

/* If you don't do this, mmapping will never

* work for writing to files

* If you don't know file size in advance as is

* often the case with data streaming from the

* network, you can use a large value here. Once you

* write out the whole file, you can shrink it

* to the correct size by calling ftruncate

* again

*/

ret = ftruncate(ctx->fd,filelen);

mm = mmap(NULL, header->filelen, PROT_READ | PROT_WRITE,

MAP_SHARED, ctx->fd, 0);

if (NULL == mm)

errx(1, "mmap() problem");

memcpy(mm + off, buf, len);

off += len;

/* Please don't forget to free mmap(2)ed memory! */

munmap(mm, filelen);

close(fd);

/**

* mmap(2) file read *

* *

***/

fd = open(filename, O_RDONLY, 0);

if (-1 == fd)

errx(1, " File read err");

/* NOT REACHED */

fstat(fd, &statbf);

filelen = statbf.st_size;

mm = mmap(NULL, filelen, PROT_READ, MAP_SHARED, fd, 0);

if (NULL == mm)

errx(1, "mmap() error");

/* NOT REACHED */

/* Now onward you can straightaway

* do a memory copy of the mm pointer as it

* will dish out file data to you

*/

bufptr = mm + off;

/* You can straightaway copy mmapped memory into the

network buffer for sending */

memcpy(pkt.buf + filenameoff, bufptr, bytes);

/* Please don't forget to free mmap(2)ed memory! */

munmap(mm, filelen);

close(fd);

Figure 2. Pipelining

http://www.linuxjournal.com

make sure your test cases take care of LAN, WAN and, if necessary,
satellite and wireless environments.

A Few Words on TCP
TCP has been a field of intense research for decades. It’s an extremely
complex protocol with a heavy responsibility on the Internet. We often
forget that TCP is what holds the Internet together without collapse
due to congestion. IP connects networks together, but TCP ensures
that routers are not overloaded and that packets do not get lost.

Consequently, the impact of TCP on performance is higher than
any other protocol today. It is no wonder that top-notch researchers
have written several papers on the topic.

The Internet is anything but homogeneous. There is every possible
physical layer of technology on which TCP/IP works today. But, TCP is
not designed for working well through wireless networks. Even a high-
latency satellite link questions some of TCP’s assumptions on window
size and round-trip time measurement.

And, TCP is not without its share of defects. The congestion control
algorithms, such as slow start, congestion avoidance, fast retransmit,
fast recovery and so on, sometimes fail. When this happens, it hurts
your performance. Normally, three duplicate ACK packets are sufficient
for triggering congestion control mechanisms. No matter what you do,
these mechanisms can drastically decrease performance, especially if
you have a very high-speed network.

But, all else being equal, the above techniques are few of the most
useful methods for achieving good performance for your applications.

Conclusion
Gunning for very high performance is not something to be taken lightly.
It’s dependent on heuristics and empirical data as well as proven
techniques. As I mentioned previously, it is an art best perfected by
practice, and it’s also an iterative process. However, once you get a
feel for how things work, it will be smooth sailing. The moment you
build a stable base for a fast client/server interaction like this, building
powerful P2P frameworks on top is no great hassle.�

Girish Venkatachalam is an open-source hacker deeply interested in UNIX. In his free time, he likes
to cook vegetarian dishes and actually eat them. He can be contacted at girish1729@gmail.com.

Resources

Polipo User Manual:
www.pps.jussieu.fr/~jch/software/polipo/manual

TCP Tuning and Network Troubleshooting: www.onlamp.com/pub/
a/onlamp/2005/11/17/tcp_tuning.html

Wikipedia’s Definition of Bandwidth:
en.wikipedia.org/wiki/Bandwidth

Advanced Networking Techniques: beej.us/guide/bgnet/output/
html/multipage/advanced.html

TCP and Congestion Control Slides:
www.nishida.org/soi1/mgp00001.html

mailto:girish1729@gmail.com
http://www.pps.jussieu.fr/~jch/software/polipo/manual
http://www.onlamp.com/pub
http://www.nishida.org/soi1/mgp00001.html
http://www.kingstarusa.com

In two previous articles [in the September and October 2007 issues
of LJ], I looked at the basics of SCTP, how you can use SCTP as a
replacement for TCP and how you can use SCTP to process multiple
streams within a single association. In this final article, I look at how
a single endpoint deals with multiple associations (connections to
other endpoints). First though, I explain how SCTP can give extra
information about what is going on through events.

Events
The SCTP stack can generate events when “interesting” things hap-
pen. By default, all event generation is turned off except for data
events. In the last article, I discussed the SCTP call sctp_rcvmsg(). By
default, this just returns the data read. But, I also wanted to find out
on which stream the data came, and for this I had to turn on the
data_io_event so the SCTP stack would fill in the sctp_sndrcvinfo
structure, which has the sinfo_stream field. Events are listed in the
sctp_event_subscribe structure:

struct sctp_event_subscribe {

uint8_t sctp_data_io_event;

uint8_t sctp_association_event;

uint8_t sctp_address_event;

uint8_t sctp_send_failure_event;

uint8_t sctp_peer_error_event;

uint8_t sctp_shutdown_event;

uint8_t sctp_partial_delivery_event;

uint8_t sctp_adaptation_layer_event;

uint8_t sctp_authentication_event;

};

An application sets fields to one for events it is interested in
and zero for the others. It then makes a call to setsockopt() with
SCTP_EVENTS. For example:

memset(&event, 0, sizeof(event));

event.sctp_data_io_event = 1;

event.sctp_association_event = 1;

setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS,

&event, sizeof(event));

Events are delivered inline along with “ordinary” data whenever a
read (using sctp_recvmsg or similar) is done. If the application turns on
events, reads will contain a mixture of events and data. The applica-

tion then will need to examine each read to see whether it is an event
or data to be processed. This is quite straightforward. If the flags field
in the sctp_recvmsg() call has the MSG_NOTIFICATION bit set, the read
message contains an event; otherwise, it contains data as before.
Pseudo-code for this is:

nread = sctp_rcvmsg(..., msg, ..., &flags);

if (flags & MSG_NOTIFICATION)

handle_event(msg);

else

handle_data(msg, nread);

Events can be used to tell the following: if a new association has
started or if an old one has terminated; if a peer has changed state by,
say, one of the interfaces becoming unavailable or a new interface
becoming available; if a send has failed, a remote error has occurred
or a remote peer has shut down; if partial delivery has failed; and if
authentication information is available.

If an event is received in the event buffer, first its type must be
found, and then the buffer can be cast to a suitable type for that
event. For example, the code to handle a shutdown event is:

void handle_event(void *buf) {

union sctp_notification *notification;

struct sn_header *head;

notification = buf;

switch(notification->sn_header.sn_type) {

case SCTP_SHUTDOWN_EVENT: {

struct sctp_shutdown_event *shut;

shut = (struct sctp_shutdown_event *) buf;

printf("Shutdown on assoc id %d\n",

shut->sse_assoc_id);

break;

}

default:

printf("Unhandled event type %d\n",

notification->sn_header.sn_type);

}

}

Closing an Association
A socket can support multiple associations. If you close a socket, it

74 | november 2007 www.l inux journa l .com

INDEPTH

Multiple Associations
with Stream Control
Transmission Protocol
The elegant way SCTP handles multiple streams makes it ideal for things like chat clients.
JAN NEWMARCH

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 75

closes all of the associations! It is sometimes desirable to close only a
single association but not the socket, so that the socket can continue
to be used for the other associations.

SCTP can abort an association or close it gracefully. Graceful shut-
down will ensure that any queued messages are delivered properly
before shutdown, while abort does not do this. Either of these are
signaled by setting the sinfo_flags in the sctp_sndrcvinfo structure to
the appropriate value. A graceful shutdown is signaled by setting the
shutdown flag and writing a message (with no data):

sinfo.sinfo_flags = SCTP_EOF; sctp_send(..., &sinfo, ...);

The reader then will be sent an sctp_shutdown_event if it has
that event type enabled. The code to handle such an event was
shown above. This can be done only on one-to-many sockets though.
For one-to-one sockets, you are limited to using close().

Getting the Association ID
Many of the calls that deal with associations take an association ID as
a parameter. Whereas in TCP, a connection effectively is represented
by the pair of source and destination endpoint IP addresses, in SCTP,
the source and destination can both be multihomed, so they will be
represented by the set of source and the set of destination addresses.
For one-to-many sockets, the source addresses may be shared by
many associations, so I need the destination addresses to identify an
association properly. For a single association, these destination
addresses all belong to a single endpoint computer. The SCTP variation
on getsockopt()—that is, sctp_opt_info()—is used to find an associa-
tion from an address. The reason I cannot simply use getsockopt() is
that I need to pass in a socket address, and the return value includes
the association value. This in/out semantics is not supported by all
implementations of getsockopt(). The code is:

sctp_assoc_t get_associd(int sockfd, struct sockaddr *sa, socklen_t salen) {

struct sctp_paddrinfo sp;

int sz;

sz = sizeof(struct sctp_paddrinfo);

bzero(&sp, sz);

memcpy(&sp.spinfo_address, sa, salen);

if (sctp_opt_info(sockfd, 0, SCTP_GET_PEER_ADDR_INFO, &sp, &sz) == -1)

perror("get assoc");

return (sp.spinfo_assoc_id);

}

Note that Unix Network Programming (volume 1, 3rd ed.) by W.
Richard Stevens, et al., gives different code: the specification has
changed since that book was written, and the above is now the pre-
ferred way (and Stevens’ code doesn’t work under Linux anyway).

Multiple Associations
A server can handle multiple clients in a number of ways: a TCP server
can use a single server socket that listens for clients and deals with
them sequentially, or it could fork off each new client connection as a
separate process or thread, or it could have many sockets and poll or
select between them. A UDP server typically will keep no client state
and will treat each message in its entirety as a separate entity. SCTP

offers another variation, roughly halfway between TCP and UDP.
An SCTP socket can handle multiple long-lived associations to

many endpoints simultaneously. It supports the “connection-oriented”
semantics of TCP by maintaining an association ID for each associa-
tion. On the other hand, it is like UDP in that each read usually returns
a complete message from a client. SCTP applications use the TCP
model by using the one-to-one sockets that I have discussed in the
previous two articles. And, it uses a one-to-many model, which is
more like UDP by using a one-to-many socket. When you create a
socket, you specify whether it is one-to-one or one-to-many. In the
first article in this series, I created a one-to-one socket by the call:

sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)

To create a one-to-many socket, I simply change the second
parameter:

sockfd = socket(AF_INET, SOCK_SEQPACKET, IPPROTO_SCTP)

A TCP server handles multiple connections simultaneously by
essentially using concurrent reads. This is done by using multiple pro-
cesses, threads, or by poll/select among many sockets. A UDP server
typically uses a single read loop, handling each message as it arrives.
An SCTP one-to-many server looks like a UDP server: it will bind a
socket and listen. Then, instead of blocking on accept(), which
would return a new one-to-one socket, it blocks on sctp_rcvmsg(),
which returns a message from either a new or existing association.
Pseudo-code for such a server is:

sockfd = socket(...);

bind(sockfd, ...);

listen(sockfd, ...);

while (true) {

nread = sctp_rcvmsg(sockfd, ..., buf, ..., &info);

assoc_id = sinfo.sinfo_assoc_id;

stream = sinfo.sinfo_stream;

handle_message(assoc_id, stream, buf, nread);

}

A client also can use the one-to-many socket model. After binding
to a port (probably an ephemeral one), it can use the single socket to
connect to many other endpoints and use this single socket to send
messages to any of them. It even can do away with an explicit connect
operation and just start sending to new endpoints (an implicit connection
is done if no existing association exists).

Peeled-Off Sockets
One-to-one sockets follow the TCP model; one-to-many sockets follow
the UDP model. Is it possible to have both at once? Yes, it is, to some
extent. For example, you may have a server that you can talk to in
two modes: ordinary user and superuser. Messages from ordinary
users may be handled in UDP style, reading and just responding,
while superuser connections may need to be treated differently.
SCTP allows a connection on a one-to-many socket to be “peeled
off” and become a one-to-one socket. This one-to-one socket may
then be treated in TCP-style, while all other associations remain on
the one-to-many socket.

http://www.linuxjournal.com

76 | november 2007 www.l inux journa l .com

Lazy Person’s Chat
In this section, I discuss a simple example of how to build a simple chat
server using SCTP. This isn’t meant to be a competitor to the many chat
systems around, rather it is to show some of the features of SCTP.

A chat server must listen for messages coming from a probably
transient group of clients. When a message is received from any one
client, it should send the message back out to all of the other clients.

UDP could be a choice here: a server simply can wait in a read
loop, waiting for messages to come in. But, to send them back out, it
needs to keep a list of clients, and this is a bit more difficult. Clients
will come and go, so some sort of “liveness” test is needed to keep
the list up to date.

SCTP is a better choice: it can sit in a read loop too, but it also
keeps a list of associations and, better, keeps that list up to date by
sending heartbeat messages to the peers. The list management is
handled by SCTP.

TCP also could be a choice: each client would start a new client socket
on the server. The server then would need to keep a list of the client sock-
ets and do a poll/select between them to see if anyone is sending a mes-
sage. Again, SCTP is a better choice: in the one-to-many mode, it will
keep only a single socket, and there is no need for a poll/select loop.

When it comes to sending messages back to all the connected
clients, SCTP makes it even easier—the flag SCTP_SENDALL that can
can be set in the sctp_sndrcvinfo field of sctp_send(). So a server simply

INDEPTH

Listing 1. chat_client.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/select.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/sctp.h>

#define SIZE 1024

char buf[SIZE];

#define STDIN 0

char *msg = "hello\n";

#define ECHO_PORT 2013

int main(int argc, char *argv[]) {

int sockfd;

int nread, nsent;

int flags, len;

struct sockaddr_in serv_addr;

struct sctp_sndrcvinfo sinfo;

fd_set readfds;

if (argc != 2) {

fprintf(stderr, "usage: %s IPaddr\n", argv[0]);

exit(1);

}

/* create endpoint using SCTP */

sockfd = socket(AF_INET, SOCK_SEQPACKET,

IPPROTO_SCTP);

if (sockfd < 0) {

perror("socket creation failed");

exit(2); }

/* connect to server */

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = inet_addr(argv[1]);

serv_addr.sin_port = htons(ECHO_PORT);

if (connect(sockfd,

(struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0) {

perror("connect to server failed");

exit(3);

}

printf("Connected\n");

while (1) {

/* we need to select between messages FROM the user

on the console and messages TO the user from the

socket

*/

FD_CLR(sockfd, &readfds);

FD_SET(sockfd, &readfds);

FD_SET(STDIN, &readfds);

printf("Selecting\n");

select(sockfd+1, &readfds, NULL, NULL, NULL);

if (FD_ISSET(STDIN, &readfds)) {

printf("reading from stdin\n");

nread = read(0, buf, SIZE);

if (nread <= 0)

break;

sendto(sockfd, buf, nread, 0,

(struct sockaddr *) &serv_addr,

sizeof(serv_addr));

} else if (FD_ISSET(sockfd, &readfds)) {

printf("Reading from socket\n");

len = sizeof(serv_addr);

nread = sctp_recvmsg(sockfd, buf, SIZE,

(struct sockaddr *) &serv_addr,

&len,

&sinfo, &flags);

write(1, buf, nread);

}

}

close(sockfd);

exit(0);

}

http://www.linuxjournal.com

needs to read a message from any client, set the SCTP_SENDALL bit
and write it back out. The SCTP stack then will send it to all live peers!
There are only a few lines of code:

nread = sctp_recvmsg(sockfd, buf, SIZE,

(struct sockaddr *) &client_addr,

&len, &sinfo, &flags);

bzero(&sinfo, sizeof(sinfo));

sinfo.sinfo_flags |= SCTP_SENDALL;

sctp_send(sockfd, buf, nread, &sinfo, 0);

The SCTP_SENDALL flag has been introduced only recently into
SCTP and is not in current kernels (up to 2.6.21.1), but it should make
it into the 2.6.22 kernels. The full code for client and server is shown
in Listings 1 (chat_client.c) and 2 (chat_server.c).

Unordered Messages
SCTP normally delivers messages within a stream in the order in which
they were written. If you don’t need this, you can turn off the order-
ing feature. This can make delivery of messages faster, as they don’t
have to be reassembled into the correct order.

New Protocols
I have examined in these three articles how TCP applications can be moved
to SCTP and discussed the new features of SCTP. So, why isn’t everyone
using SCTP now? Well, there is the inertia of moving people off the TCP
applications onto the SCTP versions, and that will happen only when peo-
ple become fed up with the TCP versions—and that may never happen.

The place to look for SCTP is in new applications using new proto-
cols designed to take advantage of SCTP:

� SS7 (Signaling System 7, see Wikipedia) is a standard for control
signaling in the PSTN (Public Switched Telephone Network). SS7
signaling is done out of band, meaning that SS7 signaling mes-
sages are transported over a separate data connection. This repre-
sents a significant security improvement over earlier systems that
used in-band signaling. SCTP basically was invented to handle pro-
tocols like SS7 over IP. SS7 uses multihoming to increase reliability
and streams to avoid the TCP problem of head-of-line blocking.

� Diameter (RFC 3588, www.rfc-editor.org/rfc/rfc3588.txt) is an IETF
protocol to supply an Authentication, Authorization and Accounting
(AAA) framework for applications, such as network access or IP mobility.
A good introduction is at www.interlinknetworks.com/whitepapers/
Introduction_to_Diameter.pdf. It replaces an earlier protocol, Radius,
that ran over UDP. Diameter uses TCP or SCTP for the added reliability
of these transports. A Diameter server must support both TCP and
SCTP; although at present, clients can choose either. SCTP is the default,
and in the future, clients may be required to support SCTP. SCTP is
preferred, because it can use streams to avoid the head-of-line blocking
problem that exists with TCP.

� DLM (Distributed Lock Manager, sources.redhat.com/cluster/dlm)
is a Red Hat project currently in the kernel. This can use either TCP
or SCTP. SCTP has the advantage of multihome support. Although
TCP presently is the default, SCTP can be used by setting a kernel
build configuration flag.

http://www.rfc-editor.org/rfc/rfc3588.txt
http://www.interlinknetworks.com/whitepapers
http://www.genstor.com

78 | november 2007 www.l inux journa l .com

� MPI (Message Passing Interface, www.mpi-forum.org) is a de
facto standard for communication among the processes modeling
a parallel program on a distributed memory system (according to
Wikipedia). It does not specify which transport protocol should be
used, although TCP has been common in the past.

Humaira Kamal, in his Master’s thesis, investigated using SCTP as a
transport protocol and reported favourable results. He singled out the
causes as being the message-based nature of SCTP and the use of
streams within an association. These examples show that SCTP is
being used in a variety of real-world situations to gain benefits over
the TCP and UDP transports.

Conclusion
This series of articles has covered the basics of SCTP. There are many
options that can control, in fine detail, the behaviour of an SCTP stack.

There also is ongoing work in bringing a security model into SCTP, so
that, for example, TLS can be run across SCTP. There also is work
being done on different language bindings to SCTP, such as a Java lan-
guage binding. SCTP will not make TCP and UDP disappear overnight,
but I hope these articles have shown that it has features that can
make writing many applications easier and more robust.

Of course, SCTP is not the only attempt to devise new protocols. For
comparisons to other new procotols see “Survey of Transport Protocols
other than Standard TCP” at www.ogf.org/Public_Comment_Docs/
Documents/May-2005/draft-ggf-dtrg-survey-1.pdf. This shows
that SCTP stacks up very well against possible alternatives, so you
might want to consider it for your next networking project!�

Jan Newmarch is Honorary Senior Research Fellow at Monash University. He has been using
Linux since kernel 0.98. He has written four books and many papers and given courses on
many technical topics, concentrating on network programming for the last six years. His
Web site is jan.newmarch.name.

INDEPTH

Listing 2. chat_server.c

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/sctp.h>

#define SIZE 1024

char buf[SIZE];

#define CHAT_PORT 2013

int main(int argc, char *argv[]) {

int sockfd, client_sockfd;

int nread, nsent, len;

struct sockaddr_in serv_addr, client_addr;

struct sctp_sndrcvinfo sinfo;

int flags;

struct sctp_event_subscribe events;

sctp_assoc_t assoc_id;

/* create endpoint */

sockfd = socket(AF_INET, SOCK_SEQPACKET,

IPPROTO_SCTP);

if (sockfd < 0) {

perror(NULL);

exit(2);

}

/* bind address */

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_addr.sin_port = htons(CHAT_PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0) {

perror(NULL);

exit(3); }

bzero(&events, sizeof(events));

events.sctp_data_io_event = 1;

if (setsockopt(sockfd, IPPROTO_SCTP,

SCTP_EVENTS, &events, sizeof(events))) {

perror("set sock opt\n");

}

/* specify queue */

listen(sockfd, 5);

printf("Listening\n");

for (;;) {

len = sizeof(client_addr);

nread = sctp_recvmsg(sockfd, buf, SIZE,

(struct sockaddr *) &client_addr,

&len,

&sinfo, &flags);

printf("Got a read of %d\n", nread);

write(1, buf, nread);

/* send it back out to all associations */

bzero(&sinfo, sizeof(sinfo));

sinfo.sinfo_flags |= SCTP_SENDALL;

sctp_send(sockfd, buf, nread,

// (struct sockaddr *) &client_addr, 1,

&sinfo, 0);

}

}

http://www.mpi-forum.org
http://www.linuxjournal.com
http://www.ogf.org/Public_Comment_Docs

Computers are slow as molasses on a cold day, and they’ve
been like that for years. The hardware industry is doing its work,
but computers are not going to get any faster unless the software
industry follows suit and does something about it. Processing
speed is less about GHz and more about multiple cores these
days, and software needs to adapt.

I will be so bold as to postulate my own law of the multicore
trend for hardware: the number of cores on a chip would double
every three years. It remains to be seen whether I’m going to be
as accurate in this prediction as Gordon Moore happened to be,
but it looks good so far. With Intel and AMD introducing quad-
core systems and Sun pushing the envelope even further with its
first hexadeca-core CPU named Rock, the question the software
industry has to ask itself is “Are we ready to make all these execu-
tion threads do useful work for us?” My strong opinion is that we
are not ready. A new paradigm is yet to be invented, and we
don’t really know what it should look like. What we do know,
however, in the words of Herb Sutter, is “The biggest sea change
in software development since the OO revolution is knocking at
the door, and its name is Concurrency.”

The first layer of software where hardware parallelism is going
to percolate is the kernel of your operating system. And, I know
of only two kernels that have what it takes to tackle the chal-
lenge: Solaris and Linux. If there’s any Mac OS X—or dare I say,
Windows—fanboys out there, I have two phrases for you: “256
processor systems” and “Completely Fair Scheduler”. Now, having
a kernel that is capable of efficiently multiplexing a large number
of processes to a large number of hardware threads is only as
good as your demand in actually having that large number of indi-
vidual processes running in parallel. And, as much as it is an ISP or
provisioning person’s dream come true, on my laptop I rarely have
more than four really active processes running at the same time.
The real need that I have is for each individual application to be
able to take advantage of the underlying hardware parallelism.
And, that’s how a fundamental hardware concept permeates yet
another software layer—an application one. At the end of the day
we, as userland software developers, have no other choice but to
embrace the parallel view of the world fully. Those pesky hard-
ware people left us no choice whatsoever.

For the rest of this article, I assume that you have at least a
dual-core system running Linux kernel 2.6.x and that you have
Sun Studio Express installed in /opt/sun/sunstudio and added to

your PATH, as follows:

PATH=/opt/sun/sunstudio12/bin:$PATH

My goal is to explain the kind of practical steps you can take to
teach that old serial code of yours a few multicore tricks.

There are three basic steps to iterate through to add parallelism
gradually to your serial application:

1. Identify parallelism.

2. Express parallelism.

3. Measure and observe.

And, even though the first two steps sound like the most
exciting ones, I cannot stress enough the importance of step 3.
Parallel programming is difficult and riddled with unexpected
performance gotchas. And, there is no other way of being certain
that your code got faster than proving it with numbers. The good
news is that it isn’t all that difficult. If you happen to develop
mostly for Intel architectures, you can use code similar to the
FFMPEG’s START_TIMER/STOP_TIMER for microbenchmarking:

START_TIMER

do_interesting_stuff();

STOP_TIMER("do_interesting_stuff_tag")

Additionally, there’s the Sun Studio Performance analyzer for
observing macro behaviour. You also can use tools like Intel’s
VTune or even time(1), but whatever you do, make sure that
performance regression testing is as much a part of your testing
routine as the regular regression testing is. You do regression
testing, don’t you?

Identifying parallelism in an existing application usually starts
with finding spots with data parallel characteristics, task parallel
characteristics and figuring out a scheduling model to tie the two
together. Data parallelism usually can be found in applications
working with large sets of global or static data (think audio, video
and image processing, gaming engines and rendering software).
Task parallelism, on the other hand, mostly is appropriate when
branch-and-bound computation takes place (think Chess-solvers

80 | november 2007 www.l inux journa l .com

INDEPTH

Roman’s Law and Fast
Processing with Multiple
CPU Cores
Some practical methods to exploit multiple cores and find thread synchronization problems.
ROMAN SHAPOSHNIK

http://www.linuxjournal.com

when a bunch of tasks are asked to do similar calculations, but if
one finds a solution, there’s no need to wait for others).

Once you’ve identified all potential sources of the parallelism in
your application, you have to decide what programming tech-
niques to use for expressing it. For an application written in C or
C++, the most commonly used one happens to be explicit paral-
lelization with POSIX threads. This method has been around for
decades, and most developers usually have some familiarity with it.
On the other hand, given its inherent complexity and the fact that
it no longer is the only game in town, I’m going to skip over it.

Let’s look at this sample code, which happens to be a very
simple routine for calculating how many prime numbers there are
between 2 and N:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include <omp.h>

5

6 /* pflag[v] == 1 if and only if v is a prime number */

7 char *pflag;

8

9 int is_prime(int v)

10 {

11 int i;

12 int bound = floor(sqrt(v)) + 1;

13

14 for (i = 2; i < bound; i++) {

15 if (v % i == 0) {

16 pflag[v] = 0;

17 return 0; /* v is NOT a prime number */

18 }

19 }

20 return 1; /* v is a prime number */

21 }

22

23 int main(int argc, char **argv)

24 {

25 int i;

26 int total = 0;

27 int N = atoi(argv[1]);

28 int primes[N]; /* array of prime numbers */

29 pflag=(char*)alloca(N);

30

31 for (i = 2; i < N; i++) {

32 pflag[i] = 1; /* all numbers are prime until... */

33 } /* ...proven otherwise */

34

35 for (i = 2; i < N; i++) { /* let the testing begin! */

36 if (is_prime(i)) {

37 primes[total] = i;

38 total++;

39 }

40 }

41

42 printf("Number of prime numbers between 2 and %d: %d\n",

43 N, total);

Advertiser Index

For advertising information, please contact our sales
department at 1-713-344-1956 ext. 2 or ads@linuxjournal.com.

www.linuxjournal.com/advertising

Advertiser Page # Advertiser Page #

ABERDEEN, LLC 41

www.aberdeeninc.com

APPRO HPC SOLUTIONS C2

appro.com

ASA COMPUTERS 71, 91

www.asacomputers.com

AVOCENT CORPORATION 1

www.avocent.com/remotecontrol

CARI.NET 83

www.cari.net

CORAID, INC. 17

www.coraid.com

COYOTE POINT 3

www.coyotepoint.com

EMAC, INC. 19

www.emacinc.com

EMPERORLINUX 13

www.emperorlinux.com

FAIRCOM 39

www.faircom.com

GENSTOR SYSTEMS, INC. 77

www.genstor.com

HPC SYSTEMS, INC. 7

www.hpcsystems.com

HURRICANE ELECTRIC 85

www.he.net

INFITECH 20, 21

www.infi-tech.com

INTEL 37

www.intel.com

KING STAR COMPUTER 73

www.kingstarusa.com

LINUX JOURNAL 16, 93, 95

www.linuxjournal.com

LISA 07 79

www.usenix.org/events/usenix07

LOGIC SUPPLY, INC. 6

www.logicsupply.com

LPI 67

www.lpi.org

MICROWAY, INC. C4, 63

www.microway.com

MIKRO TIK 45

www.routerboard.com

POGO LINUX 27

www.pogolinux.com

POLYWELL COMPUTERS, INC. 31

www.polywell.com

THE PORTLAND GROUP 29

www.pgroup.com

QSOL.COM 5

www.qsol.com

RACKSPACE MANAGED HOSTING C3

www.rackspace.com

R CUBED TECHNOLOGIES 15

www.rcubedtech.com

SERVERS DIRECT 9

www.serversdirect.com

SILICON MECHANICS 25, 35

www.siliconmechanics.com

SUPER MICRO COMPUTER, INC. 33

www.supermicro.com

TECHNOLOGIC SYSTEMS 14

www.embeddedx86.com

UNIWIDE TECHNOLOGIES 11

www.uniwide.com

WILEY TECHNOLOGY PUBLISHING 23

www.wiley.com

www.l inux journa l .com november 2007 | 81

mailto:ads@linuxjournal.com
http://www.linuxjournal.com/advertising
http://www.aberdeeninc.com
http://www.asacomputers.com
http://www.avocent.com/remotecontrol
http://www.cari.net
http://www.coraid.com
http://www.coyotepoint.com
http://www.emacinc.com
http://www.emperorlinux.com
http://www.faircom.com
http://www.genstor.com
http://www.hpcsystems.com
http://www.he.net
http://www.infi-tech.com
http://www.intel.com
http://www.kingstarusa.com
http://www.linuxjournal.com
http://www.usenix.org/events/usenix07
http://www.logicsupply.com
http://www.lpi.org
http://www.microway.com
http://www.routerboard.com
http://www.pogolinux.com
http://www.polywell.com
http://www.pgroup.com
http://www.qsol.com
http://www.rackspace.com
http://www.rcubedtech.com
http://www.serversdirect.com
http://www.siliconmechanics.com
http://www.supermicro.com
http://www.embeddedx86.com
http://www.uniwide.com
http://www.wiley.com
http://www.linuxjournal.com

82 | november 2007 www.l inux journa l .com

44

45 return 0;

46 }

Granted, the code is silly (some might even say brain-dead), but
let’s pretend it is a real-life application. In that case, we certainly would
benefit from as much automation as possible. And, if you think about
it, there’s no tool better suited for helping us than a compiler—after
all, it already takes care of understanding the semantics of the code
in order to perform optimizations. Ideally, what we would need is a
compiler that talks back to us, helping us understand the source code
better and make reasonable tweaks based on that information. Here’s
how Sun Studio 12 lets you do that:

$ cc -g -fast prime.c -o prime

$ er_src prime

.....

Source loop below has tag L3

35. for (i = 2; i < N; i++) { /* let the testing begin! */

Function is_prime inlined from source file prime.c into the code

for the following line. 1 loops inlined

Loop in function is_prime, line 14 has tag L4

36. if (is_prime(i)) {

Finally! Your compiler actually explains to you in plain human
language, what transformations it applied to the source code to
make it faster (-fast). Not only that, but it also identifies and tags all
key areas (such as loops) that you later can navigate and inspect for
the parallelization potential. Identifying parallelism just got easier.
But what about expressing parallelism? Would it be completely out
of the question to delegate some of that to the compiler as well?
After all, we are too lazy to use POSIX threads (besides, they are like
the GOTOs of parallel programming, anyway). The good news is
that with the right compiler it is possible. But, before we go there,
let’s remember the third step from our “three-step parallelization
program” and establish a performance baseline:

$ cc -fast prime.c -o prime

$ collect ./prime 2000000

Creating experiment database test.1.er ...

Number of prime numbers between 2 and 2000000: 148933

$ er_print -statistics test.1.er

Execution for entire program

Start Label: Total

End Label: Total

Start Time (sec.): 0.028

End Time (sec.): 3.364

Duration (sec.): 3.336

Total LWP Time (sec.): 3.337

Average number of LWPs: 1.000

..

The -fast command-line option instructs the Sun Studio C compiler
to generate the fastest possible code for the same architecture where
the compilation happens. The last two commands actually run the

generated executable and report runtime statistics for the function
main. Now we know that whatever we do to the source code, the
result shouldn’t be slower than 3.336 seconds. With that in mind,
let’s try asking the compiler to do its best not only at identifying
parallelism (-xloopinfo), but at expressing it as well (-xautopar):

$ cc -fast -xloopinfo -xautopar prime.c -o prime

"prime.c", line 14: not parallelized, loop has multiple exits

"prime.c", line 14: not parallelized, loop has multiple exits

(inlined loop)

"prime.c", line 31: PARALLELIZED, and serial version generated

"prime.c", line 35: not parallelized, unsafe dependence (total)

So, with only two extra command-line options, the compiler was
smart enough to parallelize the loop on line 31 (-xautopar) and honest
enough to explain why two other loops (lines 14 and 35) cannot be
parallelized easily (-xloopinfo). That’s pretty impressive, but let’s see
whether it got us any speedup at all:

$ export OMP_NUM_THREADS=4

$ collect ./prime 2000000

Creating experiment database test.2.er ...

Number of prime numbers between 2 and 2000000: 148933

$ er_print -statistics test.2.er | grep Duration

Duration (sec.): 3.331

Good. It isn’t slower (although not significantly faster either), but
then again, we didn’t have to do anything with the source code. The
compiler did everything for us (except letting the runtime system use
all the way up to four threads by setting the OMP_NUM_THREADS
environment variable to four). Or did it? What about that loop on
line 35? It doesn’t look any more complicated than the one on line
31. Seems like the compiler is being overly conservative, and we
need to step in and help it a bit. This time, let’s express parallelism
with OpenMP.

The formal (and boring) definition of OpenMP states that it is “an
API that supports multiplatform shared-memory parallel programming
in C/C++ and Fortran on all architectures, including UNIX platforms
and Windows NT platforms”. Personally, I’d like to think about
OpenMP as a method of helping the compiler exploit data parallelism
in your application when data dependencies get out of hand. In short,
OpenMP is something you use when -xautopar complains. Given that,
for C and C++, OpenMP is expressed through the #pragmas, it is quite
safe to add these hints (although making sure that suggested parallel
operations don’t have concurrency problems is still your responsibility).
As with any #pragma, if the compiler doesn’t understand it, it’ll skip
over it. (At the time of this writing, the following freely available Linux
compilers support OpenMP 2.5: Intel Compilers, GCC 4.2 and Sun
Studio 12.)

So, how do we use OpenMP to boost the compiler’s confidence in
the loop on line 35? Simply add the following pragma to line 34:

34 #pragma omp parallel for

35 for (i = 2; i < N; i++) { /* let the testing begin! */

36 if (is_prime(i)) {

And, don’t forget to add -xopenmp to the set of command-line options:

INDEPTH

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 83

$ cc -fast -xloopinfo -xautopar -xopenmp prime.c -o prime

"prime.c", line 14: not parallelized, loop has multiple exits

"prime.c", line 14: not parallelized, loop has multiple exits

(inlined loop)

"prime.c", line 31: PARALLELIZED, and serial version generated

"prime.c", line 35: PARALLELIZED, user pragma used

Nice! We’ve got two out of three loops in our application now
completely parallelized. Let’s see how much faster it runs:

$ collect ./prime 2000000

Creating experiment database test.3.er ...

Number of prime numbers between 2 and 2000000: 146764

$ er_print -statistics test.3.er | grep Duration

Duration (sec.): 1.132

No doubt, 294% is an impressive speedup, but how come we
lost some prime numbers? We now have 146,764 of them reported
instead of 148,933. Maybe the compiler was right in being
conservative and not parallelizing that pesky loop. Should we go
back and remove our OpenMP pragma? Not yet. Even though
we’ve just caught a bug in our parallelized version of the same
application (which only goes to show how easy it is to introduce
bugs and how much more important
regression testing becomes when you try to
parallelize anything), we still are on the
right track. The question is, how do we
find the actual problem?

The trouble with parallel programming
is that it makes some sections of your
application nondeterministic. That means
now you have to deal with all sorts of
problems you didn’t have to deal with
before, such as race conditions, and dead-
lock and resource allocation issues are the
chief nemeses. The amount of nondeter-
minism introduced is, in fact, something
that makes POSIX threads quite fragile in
most real-life situations—so much so,
that one of the key parallel computing
researchers, Professor Edward A. Lee, made
a pretty scary prediction in his article “The
Problem with Threads”:

I conjecture that most multithreaded

general-purpose applications are, in

fact, so full of concurrency bugs that

as multicore architectures become

commonplace, these bugs will begin to

show up as system failures. This scenario

is bleak for computer vendors: their

next generation of machines will become

widely known as the ones on which many

programs crash.

As you can see, OpenMP, even though it
introduces significantly less nondeterminism

than POSIX threads do, is still not a panacea. After all, even our
simplistic usage of it was enough to introduce a bug. It seems that
regardless of how we express parallelism, what we need is a tool
that would help us uncover concurrency bugs.

I know of two such tools freely available on Linux: Intel Thread
Checker and Sun Studio Thread Analyzer. And, here’s how you can
use the latter one to combat data races (note that we need an
extra compile-time command-line option -xinstrument=datarace to
make thread analysis possible and that we have to ask collect for
recording data race events by specifying -r on):

$ cc -fast -xloopinfo -xautopar -xopenmp -xinstrument=datarace

�prime.c -o prime

$ collect -r on ./prime 2000000

Creating experiment database tha.1.er ...

At the end of the day we, as
userland software developers, have
no other choice but to embrace the
parallel view of the world fully.

http://www.linuxjournal.com
http://www.cari.net/lj

84 | november 2007 www.l inux journa l .com

Number of prime numbers between 2 and 2000000: 148933

$ er_print -races tha.1.er

No race information recorded in experiments

Weird. Not only did we get the correct result, but also the thread
analyzer didn’t seem to notice anything unusual. Is it broken? Not
really. You see, what makes concurrent bugs so notoriously difficult
to track down is the fact that most of them are intermittent. As with
most manifestations of a nondeterministic behavior, they come and go

depending on how applications are run, what else runs on the system
and whether you use tools such as a conventional debugger. Thread
analyzer reports only those problems that did actually occur. Well, if at
first you don’t succeed:

$ collect -r on ./prime 2000000

Creating experiment database tha.2.er ...

Number of prime numbers between 2 and 2000000: 114833

$ er_print -races tha.2.er

Total Races: 2 Experiment: tha.2.er

Race #1, Vaddr: (Multiple Addresses)

Access 1: Write, main -- MP doall from line 34

[_$d1B34.main] + 0x00000172, line 37 in "prime.c"

Access 2: Write, main -- MP doall from line 34

[_$d1B34.main] + 0x00000172, line 37 in "prime.c"

Total Traces: 1

Race #2, Vaddr: 0xbffff28c

Access 1: Write, main -- MP doall from line 34

[_$d1B34.main] + 0x00000189, line 38 in "prime.c"

Access 2: Write, main -- MP doall from line 34

[_$d1B34.main] + 0x00000189, line 38 in "prime.c"

Total Traces: 1

Bingo! We reproduced the bug and our tool dutifully reported
the actual location of where the race condition happened: lines 37
and 38. Things go wrong when two threads find prime numbers and
they try to update the primes array and total variable—a textbook
example of a race condition. But, it’s pretty easy to fix. We have to
serialize threads entering these two lines of code. Can we do that with
OpenMP? Sure we can:

37 #pragma omp critical

38 {

39 primes[total] = i;

40 total++;

41 }

With that, let’s see what the final speedup is going to be:

$ cc -fast -xloopinfo -xautopar -xopenmp prime.c -o prime

$ collect ./prime 2000000

Creating experiment database test.4.er ...

Number of prime numbers between 2 and 2000000: 148933

$ er_print -statistics test.4.er | grep Duration

Duration (sec.): 1.130

It’s 2.95 times faster. Not bad for 15 minutes of work and four
extra lines of OpenMP pragmas giving hints to the compiler!

A Few Loose Ends
OpenMP and -xautopar seem to work pretty well for C, but what
about C++? Will they mesh well with the kind of modern C++ usage
peppered with generics and template metaprogramming? The short
answer is, there’s no short answer. But, let’s see for ourselves with the
following example of modern C++ [ab]use:

#include <vector>

#include <iterator>

INDEPTH

Resources

Moore’s Law:
www.intel.com/technology/mooreslaw/index.htm

Sun Studio Express: developers.sun.com/sunstudio/downloads/
express/index.jsp

FFMPEG: ffmpeg.mplayerhq.hu

Intel VTune: www.intel.com/cd/software/products/asmo-na/
eng/239145.htm

Intel Thread Checker: www.intel.com/cd/software/products/
asmo-na/eng/291669.htm

TotalView Debugger: www.totalviewtech.com/index.htm

POSIX Threads:
www.mhpcc.edu/training/workshop2/pthreads/MAIN.html

OpenMP: www.openmp.org

Effective Use of OpenMP in Games:
https://www.cmpevents.com/Sessions/GD/EffectiveUse.ppt

Intel Thread Building Blocks: osstbb.intel.com

Cilk: supertech.csail.mit.edu/cilk

“The Problem with Threads”:
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software”: gotw.ca/publications/concurrency-ddj.htm

The trouble with parallel
programming is that it
makes some sections of your
application nondeterministic.

http://www.linuxjournal.com
http://www.intel.com/technology/mooreslaw/index.htm
http://www.intel.com/cd/software/products/asmo-na
http://www.intel.com/cd/software/products
http://www.totalviewtech.com/index.htm
http://www.mhpcc.edu/training/workshop2/pthreads/MAIN.html
http://www.openmp.org
https://www.cmpevents.com/Sessions/GD/EffectiveUse.ppt
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

#include <algorithm>

#include <iostream>

void standard_input_sorter() {

using namespace std;

vector<string> v;

copy(istream_iterator<string>(cin), istream_iterator<string>(),

back_inserter(v));

sort(v.begin(), v.end());

}

$ CC -c -fast -xloopinfo -xautopar -xopenmp -library=stlport4 sorter.cc

The above produces a pretty long list of complaints, explaining why a
particular section of the STLport library cannot be parallelized. The key
issue here is that certain areas of C++ are notoriously difficult to paral-
lelize by default. Even with OpenMP, things like concurrent container
access are much more trouble than they are worth. Do we have to
rewrite STL? Well, seems like Intel almost did. Intel has been working on
what it calls the Thread Building Blocks (TBB) C++ library, and its claim to
fame is exactly that—making modern C++ parallel. Give it a try, and see
if it works for you. I especially recommend it if you’re interested in
exploiting task parallelism. But, then again, the amount of modern C++
that TBB throws at even the simplest of examples, such as calculating

Fibonacci numbers, is something that really makes me sad. Tasks as
defined in the upcoming OpenMP 3.0 standard seem far less threatening.

Conclusion
There is a fundamental trend toward concurrency in hardware.
Multicore systems are now making their way into laptops and desk-
tops. Unfortunately, unless software engineers start taking these
trends into account, there’s very little that modern hardware can do
to make individual applications run faster. Of course, parallel pro-
gramming is difficult and error-prone, but with the latest tools and
programming techniques, there’s much more to it than merely POSIX
threads. Granted, this article scratches only the surface of what’s
available. Hopefully, the information presented here will be enough
of a tipping point for most readers to start seriously thinking about
concurrency in their applications. Our high-definition camcorders
demand it and so does every gamer on earth.�

Roman Shaposhnik started his career in compilers back in 1994 when he had to write a translator
for the programming language he’d just invented (the language was so weird, nobody else wanted
the job). His first UNIX exposure was with Slackware 3.0, and he’s been hooked ever since.
Currently, he works for Sun Microsystems in the Developer Products Group. He is usually found
pondering the question of how to make computers faster yet not drive application developers
insane. He runs a blog at blogs.sun.com/rvs and can be reached via e-mail at rvs@sun.com.

mailto:rvs@sun.com
http://www.he.net/ip_transit.html

Twice a year, a group of scientists in Europe and the United States
release a list of the world’s 500 most powerful computing systems.
The Top 500 list is the most prestigious ranking of its kind, with ven-
dors and users leveraging favorable rankings to promote their work.
The most recent list, released June 2007, reconfirmed a recent trend:
Linux is by far the most frequently used operating system in high-
performance computing (HPC). Consider the numbers: 389 machines
(or 78%), run some flavor of Linux, 64 run UNIX, two run Windows
and 42 feature a mix of Linux and other operating systems.

Although such dominance suggests that Linux has had a long
history in HPC, the truth is that Linux clusters began replacing UNIX
systems only six years ago. The reason for such quick initial take-up
is due to the fact that Linux and open systems brought commodity
hardware and software into what had previously been a proprietary
systems market. This change brought costs down significantly, allow-
ing users at the high end to purchase more power at lower cost and
opening the door for new users, such as traditional product designers
who were not able to afford closed proprietary systems. The domina-
tion of Linux in the HPC market is so successful that market research
firm IDC estimated Linux represented 65% of the total HPC market by
mid-2006 (as compared to approximately 30% for UNIX), with addi-
tional growth projected. The Top 500 list confirms that growth.

Challenges and Questions
Linux is clearly the present of HPC, but is it the future? Microsoft contin-
ues to make advancements with its Windows Compute Cluster Server, has
plenty of cash on hand and is clearly capable, from a business perspective,
of eating up market share. In addition, despite its well-known flaws,
everyone has worked with and is familiar with Windows, potentially
making it a comfortable platform to new HPC users.

Complicating matters further is that, despite their well-earned
market dominance, high-performance Linux clusters have, in many
cases, earned a reputation for being difficult to build and manage.
Widely available commodity components lead to complexity in the
selection, integration and testing required when building a stable system.
This complexity becomes doubly problematic when you consider that
organizations invest in HPC systems in order to get the best possible
performance for the applications they run. Small variations in system
architecture can have a disproportionately large impact on time to
production, system throughput and the price/performance ratio.

Furthermore, like any new technology, the first high-performance
Linux clusters hit bumps in the road. Early systems took a very long
time for vendors to build and deliver and an even longer time to
put into production. Additionally, early management software made
re-provisioning systems and upgrading components cumbersome.
Finally, delivering HPC systems is as much about understanding the
nuances of computer-aided engineering (CAE) applications as it is

about understanding technical minutiae related to interconnects,
processors and operating systems. Early vendors of high-performance
Linux clusters did not necessarily have the expertise in computational
fluid dynamics (CFD), finite element analysis (FEA) and visualization
codes of proprietary systems vendors.

It is, therefore, natural for many to question whether the tremen-
dous price advantage of Linux and open systems still outweighs all other
considerations. The truth is that although Windows provides some
advantages to entry-level HPC users, high-performance Linux clusters
have matured. Today’s Linux clusters deliver better performance at a
more attractive price than ever before. Clusters are increasingly being
demanded as turnkey systems, allowing faster time to production and
fewer management headaches. In addition, the very nature of open source
has contributed to the strength of high-performance Linux clustering.
Linux clusters adapt more quickly to new technology changes, are easier
to modify and optimize and benefit from a worldwide community of
developers interested in tweaking and optimizing code.

The Advantages of Linux-Based HPC
The most important factor in HPC is, of course, performance. National
laboratories and universities want ever-more powerful machines to
solve larger problems with greater fidelity. Aerospace and automotive
engineering companies want better performing systems in order to
grow from running component-level jobs (such as analyzing the stress
on an engine block) to conducting more complex, multi-parameter
studies. Product designers in a variety of other fields want to graduate
from running CAE applications on their relatively slow workstations in
order to accelerate the overall design process.

Performance, therefore, cannot be separated from high-performance
computing and in this area, Linux clusters excel. There are two primary
reasons for this: maturity and community.

Maturity
With years of experience under their belts, vendors and architects of
high-performance Linux clusters are better equipped than ever to
design stable, tuned systems that deliver the desired price performance
and enable customers to get the most out of their application licenses.

First-generation systems may have been difficult to manage, but
the newest generation comes equipped with advanced cluster man-
agement software, greatly simplifying operations. By selecting an expe-
rienced vendor, many of today’s clusters are delivered as full-featured
systems as opposed to an unwieldy pile of stitched-together commodity
components. As a result, users benefit from both lower acquisition
costs and easy-to-use high-performance systems.

The maturity of the Linux HPC industry also contributes to a deeper
understanding of the codes users rely on, as well as the hardware that
goes into building a system. Certain vendors have become experts at

86 | november 2007 www.l inux journa l .com

INDEPTH

High-Performance
Linux Clusters
The present and future of high-performance computing. DAVID MORTON

http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 87

tuning systems and optimizing Linux to meet and overcome the
challenges posed by widely used HPC applications. For example,
most high-performance structures codes, such as those from ANSYS
or ABAQUS, require high I/O to sustain higher rendering rates.
Conversely, crash/impact codes don’t require much I/O to run optimally;
they are designed to run in parallel in systems where the average CPU
count is 16. Linux has evolved to the point where it is now very easy
for vendors to build systems that accommodate the needs of these
codes—even within the same cluster.

Alliant Techsystems (ATK) is a recent example of how high-performance
Linux clusters have matured. ATK is an advanced weapon and space
systems company with many years of experience working with HPC
systems. In 2006, faced with upgrading its aging proprietary system,
the launch system’s group invested, after extensive benchmarking, in a
high-performance Linux cluster—finding one tuned and optimized for
CFD, FEA and visualization codes. The decision reflected their under-
standing that Linux clusters—and vendors—had matured.

“We had heard several horror stories of organizations that moved
to Linux supercomputers, only to suffer through installation times
that stretched to six or eight months and beyond”, said Nathan
Christensen, Engineering Manager at ATK Launch Systems Group. “For
instance, one of ATK’s other business units experienced eight weeks of
waiting and downtime to get a system into production. The Launch
Systems Group wanted to avoid a similar experience.”

“The system arrived application-tuned, validated and ready for
production use”, said Christensen. “We were able to move quickly
into full production, generating our simulations and conducting our
analysis within two weeks of delivery.”

The system also accelerated the company’s time to results, thereby
enabling ATK to complete designs faster and conduct more frequent,
higher-fidelity analysis. The launch system’s group completes runs
three to four times faster than before. In addition, on some of its key
CFD and FEA applications, ATK has been able to achieve ten times the
throughput performance.

Community
The greater Linux community is also an important factor in assuring
that Linux-based systems deliver the greatest performance. The benefit
of being open source means that users and vendors from around the
world continue to develop innovations and share them with the
greater community. This enables Linux-based HPC systems to adapt
more quickly to new hardware and software technologies. As a result,
the ability to take advantage of new processors, interconnects and
applications is much greater than with proprietary systems.

Additional Benefits
High-performance Linux clusters offer a range of benefits beyond raw
application performance.

First, Linux is well known for its ability to interoperate with all
types of architectures and networks. Because of the investment in HPC
systems, users want to make certain that their systems are as future-
proof as possible. Linux provides users with an operating system that is
flexible enough to accommodate virtually any future advancement.
This is further amplified, of course, when the larger Linux community,
working together to solve common problems, is again taken into
question. In addition, a variety of tools, such as Samba, allow Linux to
share file services with Windows systems, and vice versa.

Second, Linux clusters evolved without headless operations. As a
result, administrative tools are able to install and manage the system
as a whole, rather than as individual workstations or servers. These
tools continue to get easier to use, enabling users with limited
technical skills to jump quickly into HPC. To take just one example,
Linux Networx recently launched its newest cluster management
application, Clusterworx Advanced. This application provides system
administrators with intuitive tools that greatly simplify operations and
reduce administration workload.

Third, Linux-based clusters are easy to scale due, in part, to newer
filesystems, such as GPFS and Lustre, which provide better scalability,
but only on Linux and UNIX. Windows-based filesystems are typically
tuned for file sharing and don’t provide the type of performance and
accessibility required when lots of compute nodes all request the same
dataset at the same time.

Fourth, resource management tools, such as Altair’s PBS Pro and
Platform LSF, ensure that computing resources are being allocated with
utilization rates exceeding 90%. Without proper resource management,
systems tend to work only when the engineering team works, thereby
limiting overall utilization. With mature resource management tools, such
as those available for Linux-based HPC systems, jobs can be scheduled 24
hours a day, 365 days a year. Multiple jobs can be run simultaneously, as
needed, thereby ensuring excess power is always put to use.

Fifth, from a stability perspective, Linux—due to its flexibility and
the number of people working on refining it—is significantly more
stable and scalable than other platforms. Windows, for instance, is
prone to failure at moderately larger node counts and is not consid-
ered as an option at government and national laboratories.

Sixth, the nature of open source makes Linux the most convenient
platform for vendors and users to work with. Standards are broadly
defined and supported by a worldwide community of programmers—
rather than the diminishing numbers found at the remaining propri-
etary vendors. As a result, there are no shortages of fully developed
tools, utilities and software modifications that users and vendors can
leverage in order to optimize their systems.

Conclusion
The HPC market has made its choice, and the choice is the Linux OS
due to its superior performance, lower costs and its community of
open-source developers and vendors. Windows may have a lot to offer
entry-level users, especially those with more limited resources or goals.
Likewise, UNIX still has a lot to offer for many legacy HPC applications.
However, both Windows and UNIX require more work to be able to
deliver the same functionality and compelling price-performance value
of Linux. The HPC market is more open and competitive than it has
ever been, but it is clear that Linux is still the best choice for today and
the foreseeable future.�

David Morton brings 17 years’ experience in supercomputing in both vendor and end-user roles to
Linux Networx. Dave is responsible for leading the Linux Networx technology vision and directing
the hardware, software and system engineering teams. Previously, Dave served as technical
director for the Maui High Performance Computer Center where he was responsible for the definition
and oversight of technology for this Department of Defense supercomputing center. He held several
positions at SGI, including director of server I/O and continuation engineering and director of
Origin platform engineering. Dave’s experience includes eight years at Cray Research, where
he was named inventor on three issued patents. Dave earned a Master’s degree in Mechanical
Engineering from the University of Illinois and an MBA from the University of Minnesota.

http://www.linuxjournal.com

Linux is bursting with multimedia poten-
tial—at least, that’s the impression one gets
from the plethora of multimedia-oriented dis-
tributions that have surfaced in recent years.
DeMuDi, Planet CCRMA, Ubuntu Studio,
64 Studio and the list continues on ad infini-
tum. However, for many years now, the term
multimedia proved deceptive. GIMP and
Inkscape and other graphics tools meant that
2-D graphics were covered, and the astound-
ing variety of audio tools available with
real-time priority meant that users’ needs for
recording and audio processing were met.
Video tools lagged behind, because video
processing is both more difficult and more
prone to patent encumbrance. In the last few
years, things have begun to catch up to the
point where it’s feasible to create films or
cartoons from concept through execution
using only Linux tools.

Elephants Dream, one such cartoon, was
the foundation for a major breakthrough in
open-source video. Financed by presales of
a then-unseen cartoon, Elephants Dream
was a strategy for raising money to advance
the development of and raise awareness
for the open-source 3-D suite Blender
(www.blender.org). In order to accomplish
this goal, the creators had to develop some-
thing that never had been available before:
an open-source compositor.

Compositing is the art of taking multiple
image sources—whether from 3-D, vector
graphics, photographs, video or procedu-
rals—and marrying them together to create a
seamless, integrated image. A good com-
positing program provides the means to
access all the mathematical functions avail-
able in the image processing universe, and a
good artist needs to be able to get down
into the guts of an image from time to time,
below the interface, and tweak it directly
with mathematical functions.

Because of Linux’s continuing adoption in
post houses, several high-end compositing
systems, such as Shake, D2 Nuke and Eyeon
Fusion, have been available for years now,

but the prices run up to thousands of dollars
per seat with extra costs for maintenance
and render-node licenses. For those with
smaller budgets, Linux compositing has
been perpetually out of reach, unless one
has the patience to do hand scripting in
ImageMagick, which is far more technical
than most artists care to get and generally
requires the addition of a hacker to the
pipeline (another cost point), or work
frame by frame in GIMP, which is laborious
and not worth the effort for any but the
smallest projects.

Consequently, the only budget-friendly
solutions for a small studio has been Adobe’s
After Effects or Apple’s Motion, which means
adding a Windows or Mac OS machine to
the pipeline. Both are very capable, useful
tools that produce professional results, but
neither are open source.

The two classes of compositors are built
around two divergent interface paradigms,

which dramatically effect work flow. The
first of these paradigms is the Photoshop
paradigm. It shows up most prominently in
After Effects, and in a modified form in
Apple Motion, and works by marrying the
interface conventions of Photoshop with a
basic multitrack editor interface. In this
paradigm, composites are achieved using lay-
ers of images built atop each other, with
each layer being operated upon by its own
effects stack. The main advantages of this
paradigm are the speed of work for simple
and moderately complex effects and the ease
of navigation for new users who already are
familiar with Photoshop (Figure 1).

The second paradigm, the “node-based”
paradigm, is the one that appears in the
high-end professional compositors. It works
by chaining together various image functions
to create complex effects. Image functions
are mathematical transforms applied to an
image to change it in one way or another,

88 | november 2007 www.l inux journa l .com

INDEPTH

Open-Source Compositing in
Blender
How to use node-based compositing in Blender. DAN SAWYER

Figure 1. Adobe After Effects Interface

http://www.blender.org
http://www.linuxjournal.com

www.l inux journa l .com november 2007 | 89

and they reside at the base of anything one
does in GIMP or ImageMagick or in video
compositing. These functions are encapsulat-
ed in the interface by nodes. A node works a
bit like a guitar pedal—it accepts inputs and
generates outputs, and those outputs can be
routed to an infinite number of other nodes.
Thus, in a node-based compositor, one uses
the node chains to accomplish one’s goal,
and there typically are two types of nodes
from which to choose. One type is the famil-
iar, user-friendly prepackaged effects plugins,
such as one would find in the Photoshop
universe. The other type is a set of mathe-
matical interfaces that allow you to build
custom effects yourself. This has the disad-
vantage of being far more visually complex
and, for some people, much harder to learn.
However, for that steeper learning curve, the
artist gets a much more versatile work flow,
which is better suited to doing highly com-
plex work. Node-based compositors available
for Linux include: Shake (now defunct),
Eyeon Fusion, D2 Nuke (formerly of Digital
Domain, now owned by the Foundry) and
Blender (Figure 2).

Blender itself has long had a rudimentary
track-based compositing system, which has
received a lot of attention since Elephants
Dream and has become quite useful both as
a video editor and a compositor. Alas,
because its primary purpose is video editing,

it lacks the ability to nest compositions or
layer effects as complexly as can After Effects
and Motion, leaving it firmly in the quick-
and-dirty category for compositing work.

However, with version 2.43, Blender
introduced its node-based compositor, the
jewel in the crown of the Elephants Dream
improvements. Professional-level open-source
compositing has arrived, and it’s integrated
with an otherwise very powerful 3-D content
creation suite.

To demonstrate what it can do, let’s walk
through a fairly simple five-layer composite.

To get to the compositor, fire up Blender
and change the main 3-D window to the
nodes editor (Figure 3). Toggle on the Use
Nodes button. Because Blender uses nodes
for material and texture creation as well as
compositing, you need to depress the picture
icon. By default, a render scene and a com-
posite node will pop up. In the case of this
project, one of the elements I’m using is a

Figure 2. A Node-Based Interface

Figure 3. Finding the Nodes Editor

http://www.linuxjournal.com

90 | november 2007 www.l inux journa l .com

3-D scene in Blender, so I retain this node and
assign it to my primary camera (Figure 4).

Next, I split the bottom view into two
windows, and in the right-most pane, pull up
the image editor window, where there is a
list box that allows you to choose the output
nodes from the compositor window. This is
how you check your progress (Figure 5).

Next, I add a few more sources. In each
case, pressing space brings up a menu that
allows me to add nodes. I want three addi-
tional input nodes, and from each I assign
the appropriate type. For this project, I’m
working with two still images (the lens flare
and the background photo) and one image
sequence (the greenscreen clip, rendered out
from DV to an image sequence to make it

easier to work with).
First, I build the nodes chain for the

background image (Figure 6). The first node,
moving left to right, is our source node—the
photo itself. The second is a scale node,
which I use to shrink my rather large digital
photograph down to something approximat-
ing SD video resolution. Next, I’ve used an
RGB curves node to blow the highlights out
of the photo to help sell the illusion that our
character is looking from a shaded courtyard
out into a wild garden in direct sunlight.

Next, I take the pillars element, which is
a rendered layer from within Blender proper,
add a procedural glow layer to it, and marry
the glow and the pillars to the background.
To do this, I take an output from the source
and run it through a curves pass to cut out
all but the brightest highlights (Figure 7).

I pipe the output from the curves node
into a blur node, where I do a 40-pixel x/y
tent blur and then direct that into a Screen
node, where the glow is composited back
over the source picture of the pillars. This
married image is then piped into an
AlphaOver node, which pastes the pillars and
glow over the top of the photo.

Now we come to the color keying. There
are a number of ways to do color keying in a
node-based compositor, not least among
them is building your own keyer out of basic
mathematical functions. Although this
method is excellent and yields the best
results (even on DV footage, which has some
very particular problems with color keying), it
requires far more ink than I have space for
here. So, for the sake of brevity, I selected
one of Blender’s three native keying nodes,
the channel key, to do the job (Figure 8).

The footage, first off, needs some prep,
and I’ve prepared the same footage two dif-
ferent ways—one for pulling the matte and
the other for color matching. I first ran the
footage through a scaling node to correct for
the 16:9 aspect ratio I shot in—as the rest of
my elements are in 4:3, I’m pre-correcting
the footage rather than doing it at render
time. I then ran it through a translate node,
which allowed me to reposition the footage
to the left, so that we actually can look over
the actress’ shoulder rather than just staring
at the back of her head. From there, I send
the output into two parallel subtrees—keying
and color correction.

INDEPTH

Figure 4. Basic Composite Nodes Setup

Figure 5. The Viewer Node and Window

Figure 6. The Background Nodes Tree

Professional-level
open-source
compositing has
arrived, and it's
integrated with
an otherwise very
powerful 3-D content
creation suite.

http://www.linuxjournal.com

The keying subtree begins with a curves node, which pushes
the green in the greenscreen into a narrow band to make it easier
for the keyer to latch on to. Then, the output links to the input of
a channel keyer, set to pull the cleanest possible matte (which I
accomplished by hooking a viewer node to the image output, so I
could see what I was doing when I played with the settings). The
resulting matte is then run through a blur node. Normally, when
keying DV footage, I would apply a 4x2 blur to soften the matte
and compensate for the edge artifacting introduced by the DV
compression. However, in this case, my edges were dark, because
of how I lit the original scene, and I needed some extra feathering
so the brightness from the background would bleed over. The
output of this blur node is then piped into the Fac input of an
AlphaOver node, which marries the greenscreen footage to the
rest of the image. But, I’m getting ahead of myself.

Let’s back up to the other half of the keying tree. This takes an

Why an Image
Sequence Instead

of a Video?
Working with image sequences offers three distinct
advantages over working with video. First, with
image sequences it’s easier to retouch problems on
individual frames without reprocessing an entire clip.
Second, the variety of alpha-enabled lossless formats
gives the operator a far greater flexibility than do
video formats, very few of which are lossless or allow
embedded alpha channels. Third, video codecs are,
frankly, a big pain in the neck. They vary wildly in
support from one program to another; however,
image formats are universal and comparatively open.
Converting your video to image sequences before
piping it through your compositor or motion tracker
means that you’re going to encounter far fewer
problems with moving between various programs in
your work flow.

With Blender, there is one further advantage to using
image sequences, and it has to do with a shortcom-
ing of the program. Blender does not support NTSC
drop or nondrop frame encoding, both of which
run at 29.97 frames per second (fps). Because it’s a
European program and has historically been an ani-
mation program, the closest approximation it can hit
is 30fps. Though .3fps seems like a trivial difference,
it’s more than enough to slip your sound sync beyond
the limits of intelligibility, so it’s far better to work
with image sequences and then re-multiplex your
audio with your video in your video editing software,
such as KDENLIVE or OpenMovieEditor.

http://www.asacomputers.com

92 | november 2007 www.l inux journa l .com

additional output from the translate node
into a curves node, which is set to tamp
down the green channel to get rid of the
green spill and help sell the different lighting
conditions of the foreground vs. the back-
ground. The output of this curves node is
then run into the bottom input on
AlphaOver. Now, to complete the marriage
of foreground with background, we run an
additional noodle from the AlphaOver node
at the end of the background subtree into
the top image input on the keyer AlphaOver
node.

I could leave things here, but the shot
could use a little extra touch to tie all the
layers together. To accomplish this, I created
a nice lens flare and brought it in to Blender.
I ran it through a translate node to put it into
the right spot, and from there into another
screen node, which lays it over the top of the
previous composite. To do this, the lens flare
went into the top image input, and the pre-
vious AlphaOver node went into the bottom
image input, and I messed with the Fac, so
I got the right effect—just a hint of extra
brightness and anamorphic smear, which
helps sell the integration of the different
layers (Figure 9).

Now, all that remains is to hook up the
Composite node, which is what Blender
draws from for its output. This can be found
next to the viewer node under output in the
add nodes menu, which you get to by
pressing the spacebar. Once the composite
node is hooked up to the output, go to the
renderbuttons window at the bottom of the
screen, depress the Do Composite button,
and click Render, or, if it’s an animation,

click Anim (Figure 10). The result of your
hard work appears in the render window,
from where you can save it using F3 (if it’s
a still). Or, you can find it on your hard
drive in the temp directory or another

directory that you have set for output in
the renderbuttons window.

Simple though this project is, it gives a
good grounding in how nodes work and why
they’re useful. Enough access to basic

INDEPTH

Figure 7. Pillars and Glow Pass

Figure 8. The Color Keying Nodes Tree

Figure 9. Layers of the Image Including Lens Flare

Converting your video
to image sequences
before piping it through
your compositor or
motion tracker means
that you're going to
encounter far fewer
problems with
moving between
various programs
in your work flow.

http://www.linuxjournal.com

http://www.linuxjournal.com

94 | november 2007 www.l inux journa l .com

INDEPTH

image processing functions is included that the capabilities are
very deep and extensive, and because of Blender’s support for
HDR formats, such as OpenEXR, and its lack of limitation on reso-
lutions, it is squarely in the professional compositing camp, albeit
at the less-sophisticated end of the spectrum (as one would
expect from a brand-new project). It is advancing quickly. In future
versions, more user-friendly keying tools and color tools are
planned, and hopefully there also will be more direct access to the
translation and garbage matting functions, which at the moment
are obtuse and inconvenient. Until such tools emerge, I highly
recommend that anyone wanting to use Blender as a workhorse
compositor invest in a book that teaches how compositing works,
both in theory and practice. The best available is The Art and
Science of Digital Compositing (The Morgan Kaufmann Series in
Computer Graphics).

Using Blender for composite work has significant advantages as
well, since it’s an integrated part of a 3-D content creation suite,
the particle systems, fluid systems, procedural textures and all the
traditional 3-D modeling and animation tools are at the compositing
system’s disposal, which is supremely useful for any number of
highly complicated shots that normally would require using several
programs in conjunction to pull off correctly.

Here’s hoping the Project Peach, the currently in-process sequel

production to Elephants Dream, gives us more such innovations that
push the compositing system to the next plateau. Until then, there is
much to explore, learn and use.

Open-source compositing has finally arrived. Enjoy!�

Dan Sawyer is the founder of ArtisticWhispers Productions (www.artisticwhispers.com), a small
audio/video studio in the San Francisco Bay Area. He has been an enthusiastic advocate for free and
open-source software since the late 1990s, when he founded the Blenderwars filmmaking community
(www.blenderwars.com). Current projects include the independent SF feature Hunting Kestral and
The Sophia Project, a fine-art photography book centering on strong women in myth.

Figure 10. Click Render or Anim in the Blender Controls

Figure 11. The Completed Project

PS Form 3526

1. Publication Title: Linux Journal
2. Publication Number:

1075-3583
3. Filing Date: September 10, 2007
4. Issue Frequency: Monthly
5. Number of Issues Published

Annually: 12
6. Annual Subscription Price: $25
7. Complete Mailing Address of

Known Office
of Publication:

PO Box 980985
Houston, TX 77098

Contact Person: Mark Irgang
713-589-3503

8. Complete Mailing Address of
Headquarters of General
Business Office of Publisher:

PO Box 980985
Houston, TX 77098

9. Full Names and Complete
Addresses of Publisher, Editor,
and Managing Editor:

Publisher: Carlie Fairchild
PO Box 980985
Houston, TX 77098
Editor: Doc Searls
PO Box 980985
Houston, TX 77098
Managing Editor:
Jill Franklin
PO Box 980985
Houston, TX 77098

10. Owner(s):
Carlie Fairchild
PO Box 980985
Houston, TX 77098
Joyce Searls
PO Box 980985
Houston, TX 77098
Adele Soffa
PO Box 980985
Houston, TX 77098

11. Known Bondholders,
Mortagees, and Other Security
Holders Owning or Holding 1
Percent or More of Total
Amount of Bonds, Mortages,
or Other Securities: None

12. Tax Status: Has not Changed
During Preceding 12 Months

13. Publication Title: Linux Journal 14. Issue Date: October
15. Extent and Nature of Circulation Average No. Copies Each Issue No. Copies of Single Issue

During Preceding 12 Months Published Nearest to Filing Date
a. Total Number of Copies:

(Net press run) 57,908 54,182
b. Paid and/or Requsted Circulation

(1) Paid/Requested Outside-County
Mail Subscriptions on Form 3541. 20,086 19,537

(2) Paid In-County Subscriptions
Stated on Form 3541 0 0

(3) Sales Through Dealers and
Carriers, Street Vendors, Counter Sales,
and Other Non-USPS Paid Distribution 25,688 24,005

c. Total Paid and/or Requested Circulation 45,774 43,542
d. Free Distribution Outside the Mail

(1) Outside-County as Stated
on Form 3541 810 780

(2) In-County as Stated
on Form 3541 0 0

(3) Other Classes Mailed Through
the USPS 0 0

e. Free Distribution Outside the Mail 2,343 1,720
f. Total Free Distribution 3,153 2,500
g. Total Distribution 48,927 46,042
h. Copies Not Distributed 8,981 8,140
i. Total 57,908 54,182
j. Percent Paid and/or Requested Circulation 94% 95%

Statement of Ownership, Management, and Circulation

http://www.linuxjournal.com
http://www.artisticwhispers.com
http://www.blenderwars.com

http://www.linuxjournal.com/archiveCD

The demands of parallel processing may be
met more easily in a language we already know.

I had a wonderful experience chatting with
the folks at RapidMind. The company pro-
vides C/C++ programmers with a very clever
tool to help them exploit the parallel process-
ing capability of multiple core CPUs. The
idea is to make parallel processing at least
somewhat transparent to the programmer.
Programmers can use RapidMind to improve
multicore performance of existing applica-
tions with minimal modifications to their
code and build new multicore applications
without having to deal with all of the com-
plexities of things like thread synchronization.

RapidMind and any other solutions like
it are invaluable and will remain so for a
long, long time. C/C++ is an extremely well-
entrenched legacy programming platform.
I can’t help but wonder, however, if the
trend toward increased parallel processing in
hardware will create a slow but steady shift
toward inherently multithreaded, managed
programming platforms like Java.

The inherent trade-off to adding cores to
a CPU poses an interesting problem for any
programming platform. As you add cores, you
increase power consumption, which generates
more heat. One way to reduce heat is to lower
the processing speed of the individual cores, or

at the very least, keep them from advancing in
speed as quickly as they might have if history
could have continued along its current path.

As a result, any single thread of execu-
tion would run faster on a speedy single-core
CPU than it would on a slower core of a
multicore CPU. The seemingly obvious
answer is to split up the task into multiple
threads. Java is multithreaded by nature,
right? Therefore, all other things being
equal, a Java application should be a natural
for multicore CPU platforms, right?

Not necessarily. If Java was a slam-dunk
superior way to exploit parallel processing, I
would have posed this shift to Java as a predic-
tion, not a question. It’s not that simple. For
example, don’t let anyone tell you that Java was
built from the ground up to exploit multiple
processors and cores. It ain’t so. Java’s famous
garbage collection got in the way of parallel
programming at first. Java versions as late as
1.4 use a single-threaded garbage collector that
stalls your Java program when it runs, no matter
how many CPUs you may have.

But Java’s multithreaded design more easily
exploits parallel processing than many other
languages, and it ended up lending itself to
improvements in garbage collection. JDK 5.0
includes various tuning parameters that may
minimize the impact of garbage collection on
multiple cores or CPUs. It’s not perfect, and you
have to take into account the way your applica-
tion is designed, but it is a vast improvement,
and the improvement is made possible by the
fact that Java was well conceived from the start.

Obviously, these features aren’t enough.
IBM builds a lot of additional parallelism into
its WebSphere application server. In addition,
IBM and other researchers are working on a
Java-related language X10, which is designed
specifically to exploit parallel processing (see
x10.sourceforge.net/x10home.shtml).

It is also interesting to note that when
Intel boasts about its quad-core performance
on Java, its numbers are based on using the

BEA jRockit JVM, not the Sun JVM. See
www.intel.com/performance/server/
xeon/java.htm for the chart and more
information. I suspect Intel used this JVM
because the BEA JVM employs garbage
collection algorithms that are more efficient
for use on multiple cores.

The fact that Intel used a non-Sun JVM
makes this whole question of the future of Java
on multicore CPUs interesting. I won’t discount
the possibility that Intel may have tuned its
code to work best with the BEA JVM. But it is a
significant plus for Java that you can choose a
JVM best suited for the hardware you have.
The big plus is that you still have to learn only
one language, Java, and this does not limit
your choice of architecture or platforms. If you
run your application on a multicore platform,
you can choose between JVMs and JVM-specific
tuning parameters to squeeze extra perfor-
mance out of your application.

Now, think a bit further into the future.
Imagine parallelism showing up in a future
generation of cell phones or other small
devices. What better language than a platform-
neutral one to take advantage of this future?

Some disclaimers are in order, though.
First, I don’t think any tool or language will
soon make optimal programming for multi-
ple cores or CPUs totally transparent. Java
has the potential to exploit multiple cores
with less impact to the programmer than
many other languages, however, which is
why I think Java’s future is getting even
more promising with this new hardware
trend. Second, although I think Java has
the edge, other managed, multithreaded
languages will no doubt ride this same
wave. Python, Ruby and your other favorite
language in this genre probably have an
equally bright future.�

Nicholas Petreley is Editor in Chief of Linux Journal and a former
programmer, teacher, analyst and consultant who has been
working with and writing about Linux for more than ten years.

Is Hardware Catching Up to Java?

Nick Petreley, Editor in Chief

/var/opinion

96 | november 2007 www.l inux journa l .com

http://www.intel.com/performance/server
http://www.linuxjournal.com

“Not long ago, I reformatted one of our servers. Not until I was driving home did I learn that I brought our entire
site down in the process. I called my guy at Rackspace and he said, ‘We’re already on it.’ By the time I pulled
in the driveway, my site was back up. Now that’s Fanatical Support.”

Keeping little mistakes from causing big problems is one definition of Fanatical Support. What will yours be?

Watch Russ’s story at www.rackspace.com/fanatical
1-888-571-8976

Russ Barnard, President, FlapDaddy Productions

“Fanatical Support™ saved me
from my own mistake.”

http://www.rackspace.com/fanatical

Affordable Infi niBand SolutionsAffordable Infi niBand Solutions
4 Great Reasons to Call Microway NOW!

TriCom™

• DDR/SDR Infi niBand HCA
• "Switchless" serial console
• NodeWatch web enabled

remote monitor and control

FasTree™

• DDR Infi niBand switches
• Low latency, modular design
• 24, 36 and 48 port building blocks

ServaStor™

• Extensible IB based storage
 building blocks
• Redundant and scalable
• Parallel fi le systems
• Open source software
• On-line capacity expansion
• RAID 0,1,1E, 3, 5, 6, 10, 50

Infi niScope™

• Monitors ports on HCA’s and switches
• Provides real time BW diagnostics
• Finds switch and cable faults
• Lane 15 interface
• Logs all IB errors

Upgrade your current cluster, or let us design your
next one using Microway Infi niBand Solutions.

To speak to an HPC expert
call 508 746-7341 and ask
for technical sales or email

sales@microway.com
www.microway.com

COM2
Internal connector

8051 BMC interface and
serial console switch

Headers to fan tach lines,
voltages, temperature probes
PS On/Off and MB reset

Mellanox™ Infi niHost III
Infi niBand HCAInfi niBand

connector

RJ45
RS-485/422
Daisy chain
connectors

LJ-InfinibandSolutions.indd 1 1/16/07 4:15:16 PM

mailto:sales@microway.com
http://www.microway.com

